Patents by Inventor William K. LUI

William K. LUI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10528463
    Abstract: Technologies for combining logical-to-physical address updates include a data storage device. The data storage device includes a non-volatile memory to store data and a logical to physical (L2P) table indicative of logical addresses and associated physical addresses of the data. Additionally, the data storage device includes a volatile memory to store one or more bins. Each bin is indicative of a subset of entries in the L2P table. Further, the data storage device includes a controller to allocate a bin in the volatile memory, write a plurality of updates to a subset of entries of the L2P table to the bin, and write the bin to the L2P table in a single write operation. Other embodiments are also described and claimed.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: January 7, 2020
    Assignee: Intel Corporation
    Inventors: Peng Li, Anand S. Ramalingam, William K. Lui, Sanjeev N. Trika
  • Patent number: 10296224
    Abstract: Provided are an apparatus, system and method for using a validity table indicating whether physical addresses have valid data to optimize write and defragmentation operations. A non-volatile memory storage device has non-volatile memory and a main memory. A memory controller reads and writes to the non-volatile memory and maintains in the main memory a logical-to-physical address table indicating, for each logical address of a plurality of logical addresses, a physical address in the non-volatile memory having data for the logical address. The main memory maintains a validity table indicating for each physical address of a plurality of physical addresses in the non-volatile memory whether the physical address has valid data.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: May 21, 2019
    Assignee: INTEL CORPORATION
    Inventors: Peng Li, William K. Lui, Sanjeev N. Trika
  • Patent number: 10146440
    Abstract: Provided are an apparatus, system and method for offloading collision check operations in a memory storage device to a collision check unit. A collision check unit includes a collision table including logical addresses for pending Input/Output (I/O) requests. An I/O request is received to a target logical address addressing a block of data in the non-volatile memory. The logical address is sent to the collision check unit. Resources to transfer data with respect to the transfer buffer to data for the I/O request are allocated in parallel while the collision check unit is determining whether the collision table includes the target logical address. The collision check unit determines whether the collision table includes the target logical address and returns indication of whether the collision table includes the target logical address indicating that current data for the target logical address is already in the transfer buffer.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: December 4, 2018
    Assignee: INTEL CORPORATION
    Inventors: Peng Li, Anand S. Ramalingam, Jawad B. Khan, William K. Lui, Divya Narayanan, Sanjeev N. Trika
  • Publication number: 20180173420
    Abstract: Provided are an apparatus, system and method for using a validity table indicating whether physical addresses have valid data to optimize write and defragmentation operations. A non-volatile memory storage device has non-volatile memory and a main memory. A memory controller reads and writes to the non-volatile memory and maintains in the main memory a logical-to-physical address table indicating, for each logical address of a plurality of logical addresses, a physical address in the non-volatile memory having data for the logical address. The main memory maintains a validity table indicating for each physical address of a plurality of physical addresses in the non-volatile memory whether the physical address has valid data.
    Type: Application
    Filed: December 21, 2016
    Publication date: June 21, 2018
    Inventors: Peng LI, William K. LUI, Sanjeev N. TRIKA
  • Publication number: 20180173418
    Abstract: Provided are an apparatus, system and method for offloading collision check operations in a memory storage device to a collision check unit. A collision check unit includes a collision table including logical addresses for pending Input/Output (I/O) requests. An I/O request is received to a target logical address addressing a block of data in the non-volatile memory. The logical address is sent to the collision check unit. Resources to transfer data with respect to the transfer buffer to data for the I/O request are allocated in parallel while the collision check unit is determining whether the collision table includes the target logical address. The collision check unit determines whether the collision table includes the target logical address and returns indication of whether the collision table includes the target logical address indicating that current data for the target logical address is already in the transfer buffer.
    Type: Application
    Filed: December 20, 2016
    Publication date: June 21, 2018
    Inventors: Peng LI, Anand S. RAMALINGAM, Jawad B. KHAN, William K. LUI, Divya NARAYANAN, Sanjeev N. TRIKA
  • Publication number: 20180089076
    Abstract: Technologies for combining logical-to-physical address updates include a data storage device. The data storage device includes a non-volatile memory to store data and a logical to physical (L2P) table indicative of logical addresses and associated physical addresses of the data. Additionally, the data storage device includes a volatile memory to store one or more bins. Each bin is indicative of a subset of entries in the L2P table. Further, the data storage device includes a controller to allocate a bin in the volatile memory, write a plurality of updates to a subset of entries of the L2P table to the bin, and write the bin to the L2P table in a single write operation. Other embodiments are also described and claimed.
    Type: Application
    Filed: September 28, 2016
    Publication date: March 29, 2018
    Inventors: Peng Li, Anand S. Ramalingam, William K. Lui, Sanjeev N. Trika
  • Patent number: 9922725
    Abstract: In accordance with the present description, a device includes an internal defect detection and repair circuit which includes a self-test logic circuit built in within the device and a self-repair logic circuit also built in within the device. In one embodiment, the built in self-test logic circuit may be configured to automatically identify defective memory cells in a memory. Upon identifying one or more defective memory cells, the built in self-repair logic circuit may be configured to automatically repair the defective memory cells by replacing defective cells with spare cells within the memory. In one embodiment, data patterns are generated as a function of memory addresses and periodic address offsets.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: March 20, 2018
    Assignee: INTEL CORPORATION
    Inventors: Bruce Querbach, William K. Lui, David G. Ellis, David J. Zimmerman, Theodore Z. Schoenborn, Christopher W. Hampson, Ifar Wan, Yulan Zhang
  • Publication number: 20170084351
    Abstract: In accordance with the present description, a device includes an internal defect detection and repair circuit which includes a self-test logic circuit built in within the device and a self-repair logic circuit also built in within the device. In one embodiment, the built in self-test logic circuit may be configured to automatically identify defective memory cells in a memory. Upon identifying one or more defective memory cells, the built in self-repair logic circuit may be configured to automatically repair the defective memory cells by replacing defective cells with spare cells within the memory. In one embodiment, data patterns are generated as a function of memory addresses and periodic address offsets. Other aspects are described herein.
    Type: Application
    Filed: December 2, 2016
    Publication date: March 23, 2017
    Inventors: Bruce QUERBACH, William K. LUI, David G. ELLIS, David J. ZIMMERMAN, Theodore Z. SCHOENBORN, Christopher W. HAMPSON, Ifar WAN, Yulan ZHANG
  • Patent number: 9564245
    Abstract: In accordance with the present description, a device includes an internal defect detection and repair circuit which includes a self-test logic circuit built in within the device and a self-repair logic circuit also built in within the device. In one embodiment, the built in self-test logic circuit may be configured to automatically identify defective memory cells in a memory. Upon identifying one or more defective memory cells, the built in self-repair logic circuit may be configured to automatically repair the defective memory cells by replacing defective cells with spare cells within the memory.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: February 7, 2017
    Assignee: INTEL CORPORATION
    Inventors: Bruce Querbach, Theodore Z. Schoenborn, David J. Zimmerman, David G. Ellis, Christopher W. Hampson, Ifar Wan, Yulan Zhang, Ramakrishna Mallela, William K. Lui
  • Patent number: 9548137
    Abstract: In accordance with the present description, a device includes an internal defect detection and repair circuit which includes a self-test logic circuit built in within the device and a self-repair logic circuit also built in within the device. In one embodiment, the built in self-test logic circuit may be configured to automatically identify defective memory cells in a memory. Upon identifying one or more defective memory cells, the built in self-repair logic circuit may be configured to automatically repair the defective memory cells by replacing defective cells with spare cells within the memory.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: January 17, 2017
    Assignee: INTEL CORPORATION
    Inventors: Bruce Querbach, William K. Lui, David G. Ellis, David J. Zimmerman, Theodore Z. Schoenborn, Christopher W. Hampson, Ifar Wan, Yulan Zhang
  • Publication number: 20150187436
    Abstract: In accordance with the present description, a device includes an internal defect detection and repair circuit which includes a self-test logic circuit built in within the device and a self-repair logic circuit also built in within the device. In one embodiment, the built in self-test logic circuit may be configured to automatically identify defective memory cells in a memory. Upon identifying one or more defective memory cells, the built in self-repair logic circuit may be configured to automatically repair the defective memory cells by replacing defective cells with spare cells within the memory. In one embodiment, data patterns are generated as a function of memory addresses and periodic address offsets. Other aspects are described herein.
    Type: Application
    Filed: June 30, 2014
    Publication date: July 2, 2015
    Inventors: Bruce QUERBACH, William K. LUI, David G. ELLIS, David J. ZIMMERMAN, Theodore Z. SCHOENBORN, Christopher W. HAMPSON, Ifar WAN, Yulan ZHANG
  • Publication number: 20150187439
    Abstract: In accordance with the present description, a device includes an internal defect detection and repair circuit which includes a self-test logic circuit built in within the device and a self-repair logic circuit also built in within the device. In one embodiment, the built in self-test logic circuit may be configured to automatically identify defective memory cells in a memory. Upon identifying one or more defective memory cells, the built in self-repair logic circuit may be configured to automatically repair the defective memory cells by replacing defective cells with spare cells within the memory. Other aspects are described herein.
    Type: Application
    Filed: December 26, 2013
    Publication date: July 2, 2015
    Inventors: Bruce Querbach, Theodore Z. Schoenborn, David J. Zimmerman, David G. Ellis, Christopher W. Hampson, Ifar Wan, Yulan Zhang, Ramakrishna Mallela, William K. Lui