Patents by Inventor William Keating

William Keating has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240127367
    Abstract: A crop prediction system performs various machine learning operations to predict crop production and to identify a set of farming operations that, if performed, optimize crop production. The crop prediction system uses crop prediction models trained using various machine learning operations based on geographic and agronomic information. Responsive to receiving a request from a grower, the crop prediction system can access information representation of a portion of land corresponding to the request, such as the location of the land and corresponding weather conditions and soil composition. The crop prediction system applies one or more crop prediction models to the access information to predict a crop production and identify an optimized set of farming operations for the grower to perform.
    Type: Application
    Filed: August 25, 2023
    Publication date: April 18, 2024
    Inventors: David Patrick Perry, Geoffrey Albert von Maltzahn, Robert Berendes, Eric Michael Jeck, Barry Loyd Knight, Rachel Ariel Raymond, Ponsi Trivisvavet, Justin Y H Wong, Neal Hitesh Rajdev, Marc-Cedric Joseph Meunier, Casey James Leist, Pranav Ram Tadi, Andrea Lee Flaherty, Charles David Brummitt, Naveen Neil Sinha, Jordan Lambert, Jonathan Hennek, Carlos Becco, Mark Allen, Daniel Bachner, Fernando Derossi, Ewan Lamont, Rob Lowenthal, Dan Creagh, Steve Abramson, Ben Allen, Jyoti Shankar, Chris Moscardini, Jeremy Crane, David Weisman, Gerard Keating, Lauren Moores, William Pate
  • Publication number: 20240060132
    Abstract: Methods for predicting the development of sepsis in a subject at risk for developing sepsis are provided. In one method, features in a biomarker profile of the subject are evaluated. The subject is likely to develop sepsis if these features satisfy a particular value set. Methods for predicting the development of a stage of sepsis in a subject at risk for developing a stage of sepsis are provided. In one method, a plurality of features in a biomarker profile of the subject is evaluated. The subject is likely to have the stage of sepsis if these feature values satisfy a particular value set. Methods of diagnosing sepsis in a subject are provided. In one such method, a plurality of features in a biomarker profile of the subject is evaluated. The subject is likely to develop sepsis when the plurality of features satisfies a particular value set.
    Type: Application
    Filed: February 13, 2023
    Publication date: February 22, 2024
    Inventors: James A. Garrett, Sha-Sha Wang, Keith Thornton, Richard L. Moore, William Keating, William A. Nussbaumer, Craig C. Whiteford
  • Publication number: 20230117580
    Abstract: The present disclosure describes one or more embodiment of devices for assisting femoral component placement in total knee arthroplasty. The device may include a distractor configured to provide a constant distracting force. The distractor may include a main body of the distractor, a tibial paddle fixedly connected to the main body, the tibial paddle configured to engage a top of a tibia, at least one femoral paddle configured to push against a bottom of a femur, a spring housing fixed on the main body of the distractor, and a coiled constant force spring disposed in the spring housing. The spring housing is attached to an outer end of the coiled constant force spring, and the coiled constant force spring is configured to apply the constant distracting force on the at least one femoral paddle. The device further includes a mechanical apparatus for locating an isometric point of the femur.
    Type: Application
    Filed: April 21, 2021
    Publication date: April 20, 2023
    Inventors: Timothy Chandler Keating, Arthur William Keating
  • Patent number: 11578367
    Abstract: Methods for predicting the development of sepsis in a subject at risk for developing sepsis are provided. In one method, features in a biomarker profile of the subject are evaluated. The subject is likely to develop sepsis if these features satisfy a particular value set. Methods for predicting the development of a stage of sepsis in a subject at risk for developing a stage of sepsis are provided. In one method, a plurality of features in a biomarker profile of the subject is evaluated. The subject is likely to have the stage of sepsis if these feature values satisfy a particular value set. Methods of diagnosing sepsis in a subject are provided. In one such method, a plurality of features in a biomarker profile of the subject is evaluated. The subject is likely to develop sepsis when the plurality of features satisfies a particular value set.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: February 14, 2023
    Assignee: Becton, Dickinson and Company
    Inventors: James A. Garrett, Sha-Sha Wang, Keith Thornton, Richard L. Moore, William Keating, William A. Nussbaumer, Craig C. Whiteford
  • Publication number: 20210087632
    Abstract: Methods for predicting the development of sepsis in a subject at risk for developing sepsis are provided. In one method, features in a biomarker profile of the subject are evaluated. The subject is likely to develop sepsis if these features satisfy a particular value set. Methods for predicting the development of a stage of sepsis in a subject at risk for developing a stage of sepsis are provided. In one method, a plurality of features in a biomarker profile of the subject is evaluated. The subject is likely to have the stage of sepsis if these feature values satisfy a particular value set. Methods of diagnosing sepsis in a subject are provided. In one such method, a plurality of features in a biomarker profile of the subject is evaluated. The subject is likely to develop sepsis when the plurality of features satisfies a particular value set.
    Type: Application
    Filed: October 8, 2019
    Publication date: March 25, 2021
    Inventors: James A. Garrett, Sha-Sha Wang, Keith Thornton, Richard L. Moore, William Keating, William A. Nussbaumer, Craig C. Whiteford
  • Patent number: 10562036
    Abstract: Various wear resistance designs may be applied to a reactor configured to facilitate chemical reactions, and/or comminution using shockwaves created in a supersonic gaseous vortex. The reactor may include a rigid chamber having a substantially circular cross-section. A first gas inlet may be configured to introduce a high-velocity gas stream into the chamber. A first replaceable wear part may be disposed in the chamber to absorb wear impact caused by the gas stream. In some implementations, the first replaceable wear part may be a cylindrical rod continuously fed into the chamber. In some implementations, the first replaceable wear part may be coated with, or composed of, a catalytic material, and/or may be electrically isolated from the rest of the reactor. In some implementations, a second gas inlet may be disposed to steer the gas stream to a desired area within the chamber to even out the wear impact.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: February 18, 2020
    Assignee: LLT International (Irelant) Ltd.
    Inventors: Peter Lansell, William Keating, David Lowe
  • Patent number: 10443099
    Abstract: Methods for predicting the development of sepsis in a subject at risk for developing sepsis are provided. In one method, features in a biomarker profile of the subject are evaluated. The subject is likely to develop sepsis if these features satisfy a particular value set. Methods for predicting the development of a stage of sepsis in a subject at risk for developing a stage of sepsis are provided. In one method, a plurality of features in a biomarker profile of the subject is evaluated. The subject is likely to have the stage of sepsis if these feature values satisfy a particular value set. Methods of diagnosing sepsis in a subject are provided. In one such method, a plurality of features in a biomarker profile of the subject is evaluated. The subject is likely to develop sepsis when the plurality of features satisfies a particular value set.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: October 15, 2019
    Assignee: Becton, Dickinson and Company
    Inventors: James A. Garrett, Sha-Sha Wang, Keith Thornton, Richard L. Moore, William Keating, William A. Nussbaumer, Craig C. Whiteford
  • Patent number: 10434488
    Abstract: Methane may be dissociated at low temperatures and/or pressures utilizing a reactor designed to generate shockwaves in a supersonic gaseous vortex. Within a preprocessing chamber, the methane may be pressurized to a pressure of 700 kPa or more, and heated to a temperature below a dissociation temperature of methane. The methane may be introduced as a gas stream substantially tangentially to an inner surface of a chamber of the reactor to effectuate a gaseous vortex rotating about a longitudinal axis within the chamber. The gas stream may be introduced using a nozzle that accelerates the gas stream to a supersonic velocity. A frequency of shockwaves emitted from the nozzle into the gaseous vortex may be controlled. Product gas and carbon byproduct may be emitted from the chamber of the reactor. The carbon byproduct may be separated out from the product gas using a gas/solid separator.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: October 8, 2019
    Assignee: LLT INTERNATIONAL (IRELAND) LTD.
    Inventors: Peter Lansell, William Keating, David Lowe, Dominic Evans
  • Patent number: 10427129
    Abstract: A gas reactor system may be configured for facilitating chemical reactions of gases using shockwaves produced in a supersonic gaseous vortex. The system may include a gas source to provide a gas to a heater and/or a reactor. The reactor may be configured to facilitate chemical reactions of gases using shockwaves created in a supersonic gaseous vortex. The reactor may be arranged with a gas inlet to introduce a high-velocity steam of gas into a chamber of the reactor. The gas inlet may effectuate a vortex of supersonic circulating gas within the chamber. The vortex may rotate at supersonic speed about the longitudinal axis of the chamber. The system may be configured to store an output product of the reactor in a storage tank in fluid communication with the reactor.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: October 1, 2019
    Assignee: LLT INTERNATIONAL (IRELAND) LTD.
    Inventors: Peter Lansell, William Keating, David Lowe
  • Publication number: 20190070576
    Abstract: Various wear resistance designs may be applied to a reactor configured to facilitate chemical reactions, and/or comminution using shockwaves created in a supersonic gaseous vortex. The reactor may include a rigid chamber having a substantially circular cross-section. A first gas inlet may be configured to introduce a high-velocity gas stream into the chamber. A first replaceable wear part may be disposed in the chamber to absorb wear impact caused by the gas stream. In some implementations, the first replaceable wear part may be a cylindrical rod continuously fed into the chamber. In some implementations, the first replaceable wear part may be coated with, or composed of, a catalytic material, and/or may be electrically isolated from the rest of the reactor. In some implementations, a second gas inlet may be disposed to steer the gas stream to a desired area within the chamber to even out the wear impact.
    Type: Application
    Filed: September 27, 2016
    Publication date: March 7, 2019
    Inventors: Peter LANSELL, William KEATING, David LOWE
  • Patent number: 10137456
    Abstract: A reactor may be configured to facilitate chemical reactions and/or comminution of solid feed materials. The reactor may be configured to make use of shockwaves created in a supersonic gaseous vortex. The reactor may include a rigid chamber having a substantially circular cross-section. A gas inlet may be configured to introduce a high-velocity stream of gas into the chamber. The gas inlet may be disposed and arranged so as to effectuate a vortex of the stream of gas circulating within the chamber. The vortex may rotate at a supersonic speed about a longitudinal axis of the chamber. A material inlet may be configured to introduce a material to be processed into the chamber. The material may be processed within the chamber by nonabrasive mechanisms facilitated by shockwaves within the chamber. An outlet may be configured to emit the gas and processed material from the chamber.
    Type: Grant
    Filed: May 21, 2015
    Date of Patent: November 27, 2018
    Assignee: LLT International (Ireland) Ltd.
    Inventors: Peter Lansell, William Keating, David Lowe
  • Patent number: 9724703
    Abstract: Solid materials may be processed using shockwaves produced in a supersonic gaseous vortex. A high-velocity stream of gas may be introduced into a reactor. The reactor may have a chamber, a solid material inlet, a gas inlet, and an outlet. The high-velocity stream of gas may be introduced into the chamber of the reactor through the gas inlet. The high-velocity stream of gas may effectuate a supersonic gaseous vortex within the chamber. The reactor may be configured to facilitate chemical reactions and/or comminution of solid feed material using tensive forces of shockwaves created in the supersonic gaseous vortex within the chamber. Solid material may be fed into the chamber through the solid material inlet. The solid material may be processed within the chamber by nonabrasive mechanisms facilitated by the shockwaves within the chamber. The processed material that is communicated through the outlet of the reactor may be collected.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: August 8, 2017
    Assignee: LLT International (Ireland) Ltd.
    Inventors: Peter Lansell, William Keating, David Lowe
  • Publication number: 20170043315
    Abstract: Methane may be dissociated at low temperatures and/or pressures utilizing a reactor designed to generate shockwaves in a supersonic gaseous vortex. Within a preprocessing chamber, the methane may be pressurized to a pressure of 700 kPa or more, and heated to a temperature below a dissociation temperature of methane. The methane may be introduced as a gas stream substantially tangentially to an inner surface of a chamber of the reactor to effectuate a gaseous vortex rotating about a longitudinal axis within the chamber. The gas stream may be introduced using a nozzle that accelerates the gas stream to a supersonic velocity. A frequency of shockwaves emitted from the nozzle into the gaseous vortex may be controlled. Product gas and carbon byproduct may be emitted from the chamber of the reactor. The carbon byproduct may be separated out from the product gas using a gas/solid separator.
    Type: Application
    Filed: August 11, 2015
    Publication date: February 16, 2017
    Inventors: Peter LANSELL, William KEATING, David LOWE, Dominic EVANS
  • Publication number: 20160303577
    Abstract: Various wear resistance designs may be applied to a reactor configured to facilitate chemical reactions, and/or comminution using shockwaves created in a supersonic gaseous vortex. The reactor may include a rigid chamber having a substantially circular cross-section. A first gas inlet may be configured to introduce a high-velocity gas stream into the chamber. A first replaceable wear part may be disposed in the chamber to absorb wear impact caused by the gas stream. In some implementations, the first replaceable wear part may be a cylindrical rod continuously fed into the chamber. In some implementations, the first replaceable wear part may be coated with, or composed of, a catalytic material, and/or may be electrically isolated from the rest of the reactor. In some implementations, a second gas inlet may be disposed to steer the gas stream to a desired area within the chamber to even out the wear impact.
    Type: Application
    Filed: April 17, 2015
    Publication date: October 20, 2016
    Inventors: Peter LANSELL, William KEATING, David LOWE
  • Publication number: 20160303539
    Abstract: A gas reactor system may be configured for facilitating chemical reactions of gases using shockwaves produced in a supersonic gaseous vortex. The system may include a gas source to provide a gas to a heater and/or a reactor. The reactor may be configured to facilitate chemical reactions of gases using shockwaves created in a supersonic gaseous vortex. The reactor may be arranged with a gas inlet to introduce a high-velocity steam of gas into a chamber of the reactor. The gas inlet may effectuate a vortex of supersonic circulating gas within the chamber. The vortex may rotate at supersonic speed about the longitudinal axis of the chamber. The system may be configured to store an output product of the reactor in a storage tank in fluid communication with the reactor.
    Type: Application
    Filed: April 17, 2015
    Publication date: October 20, 2016
    Inventors: Peter LANSELL, William KEATING, David LOWE
  • Patent number: 9452434
    Abstract: Various wear resistance designs may be applied to a reactor configured to facilitate chemical reactions, and/or comminution using shockwaves created in a supersonic gaseous vortex. The reactor may include a rigid chamber having a substantially circular cross-section. A first gas inlet may be configured to introduce a high-velocity gas stream into the chamber. A first replaceable wear part may be disposed in the chamber to absorb wear impact caused by the gas stream. In some implementations, the first replaceable wear part may be a cylindrical rod continuously fed into the chamber. In some implementations, the first replaceable wear part may be coated with, or composed of, a catalytic material, and/or may be electrically isolated from the rest of the reactor. In some implementations, a second gas inlet may be disposed to steer the gas stream to a desired area within the chamber to even out the wear impact.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: September 27, 2016
    Assignee: LLT International (Ireland) Ltd.
    Inventors: Peter Lansell, William Keating, David Lowe
  • Publication number: 20160168638
    Abstract: Methods for predicting the development of sepsis in a subject at risk for developing sepsis are provided. In one method, features in a biomarker profile of the subject are evaluated. The subject is likely to develop sepsis if these features satisfy a particular value set. Methods for predicting the development of a stage of sepsis in a subject at risk for developing a stage of sepsis are provided. In one method, a plurality of features in a biomarker profile of the subject is evaluated. The subject is likely to have the stage of sepsis if these feature values satisfy a particular value set. Methods of diagnosing sepsis in a subject are provided. In one such method, a plurality of features in a biomarker profile of the subject is evaluated. The subject is likely to develop sepsis when the plurality of features satisfies a particular value set.
    Type: Application
    Filed: September 10, 2015
    Publication date: June 16, 2016
    Inventors: James A. Garrett, Sha-Sha Wang, Keith Thornton, Richard L. Moore, William Keating, William A. Nussbaumer, Craig C. Whiteford
  • Publication number: 20150352558
    Abstract: Solid materials may be processed using shockwaves produced in a supersonic gaseous vortex. A high-velocity stream of gas may be introduced into a reactor. The reactor may have a chamber, a solid material inlet, a gas inlet, and an outlet. The high-velocity stream of gas may be introduced into the chamber of the reactor through the gas inlet. The high-velocity stream of gas may effectuate a supersonic gaseous vortex within the chamber. The reactor may be configured to facilitate chemical reactions and/or comminution of solid feed material using tensive forces of shockwaves created in the supersonic gaseous vortex within the chamber. Solid material may be fed into the chamber through the solid material inlet. The solid material may be processed within the chamber by nonabrasive mechanisms facilitated by the shockwaves within the chamber. The processed material that is communicated through the outlet of the reactor may be collected.
    Type: Application
    Filed: June 6, 2014
    Publication date: December 10, 2015
    Applicant: LLT International (Ireland) Ltd.
    Inventors: Peter Lansell, William Keating, David Lowe
  • Patent number: 9050604
    Abstract: A reactor may be configured to facilitate chemical reactions and/or comminution of solid feed materials. The reactor may be configured to make use of shockwaves created in a supersonic gaseous vortex. The reactor may include a rigid chamber having a substantially circular cross-section. A gas inlet may be configured to introduce a high-velocity stream of gas into the chamber. The gas inlet may be disposed and arranged so as to effectuate a vortex of the stream of gas circulating within the chamber. The vortex may rotate at a supersonic speed about a longitudinal axis of the chamber. A material inlet may be configured to introduce a material to be processed into the chamber. The material may be processed within the chamber by nonabrasive mechanisms facilitated by shockwaves within the chamber. An outlet may be configured to emit the gas and processed material from the chamber.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: June 9, 2015
    Assignee: LLT International (Ireland) Ltd.
    Inventors: Peter Lansell, William Keating, David Lowe
  • Publication number: 20140141435
    Abstract: Methods for predicting the development of sepsis in a subject at risk for developing sepsis are provided. In one method, features in a biomarker profile of the subject are evaluated. The subject is likely to develop sepsis if these features satisfy a particular value set. Methods for predicting the development of a stage of sepsis in a subject at risk for developing a stage of sepsis are provided. In one method, a plurality of features in a biomarker profile of the subject is evaluated. The subject is likely to have the stage of sepsis if these feature values satisfy a particular value set. Methods of diagnosing sepsis in a subject are provided. In one such method, a plurality of features in a biomarker profile of the subject is evaluated. The subject is likely to develop sepsis when the plurality of features satisfies a particular value set.
    Type: Application
    Filed: August 12, 2013
    Publication date: May 22, 2014
    Applicant: Beckton, Dickinson and Company
    Inventors: James A. Garrett, Sha-Sha Wang, Keith Thornton, Richard L. Moore, William Keating, William A. Nussbaumer, Craig C. Whiteford