Patents by Inventor William L. Johnson

William L. Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12040014
    Abstract: Methods, systems, and devices supporting configurable resistivities for lines in a memory device, such as access lines in a memory array are described. For example, metal lines at different levels of a memory device may be oxidized to different extents in order for the lines at different levels of the memory device to have different resistivities. This may allow the resistivity of lines to be tuned on a level-by-level basis without altering the fabrication techniques and related parameters used to initially form the lines at the different levels, which may have benefits related to at least reduced cost and complexity. Lines may be oxidized to a controlled extent using either a dry or wet process.
    Type: Grant
    Filed: October 21, 2022
    Date of Patent: July 16, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Koushik Banerjee, Isaiah O. Gyan, Robert Cassel, Jian Jiao, William L. Cooper, Jason R. Johnson, Michael P. O'Toole
  • Patent number: 11905582
    Abstract: Ni—Cr—Nb—P—B alloys optionally bearing Si and metallic glasses formed from said alloys are disclosed, where the alloys have a critical rod diameter of at least 5 mm and the metallic glasses demonstrate a notch toughness of at least 96 MPa m1/2.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: February 20, 2024
    Assignee: Glassimetal Technology, Inc.
    Inventors: Jong Hyun Na, Kyung-Hee Han, Maximilien Launey, Marios D. Demetriou, William L. Johnson
  • Patent number: 11377720
    Abstract: Nickel based alloys capable of forming bulk metallic glass are provided. The alloys include Ni—Cr—Si—B compositions, with additions of P and Mo, and are capable of forming a metallic glass rod having a diameter of at least 1 mm. In one example of the present disclosure, the Ni—Cr—Mo—Si—B—P composition includes about 4.5 to 5 atomic percent of Cr, about 0.5 to 1 atomic percent of Mo, about 5.75 atomic percent of Si, about 11.75 atomic percent of B, about 5 atomic percent of P, and the balance is Ni, and wherein the critical metallic glass rod diameter is between 2.5 and 3 mm and the notch toughness between 55 and 65 MPa m1/2.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: July 5, 2022
    Assignee: Glassimetal Technology Inc.
    Inventors: Jong Hyun Na, Michael Floyd, Glenn Garrett, Marios D. Demetriou, William L. Johnson
  • Patent number: 11371108
    Abstract: The disclosure provides Fe—Cr—Ni—Mo—P—C—B metallic glass-forming alloys and metallic glasses that have a high glass forming ability along with a high thermal stability of the supercooled liquid against crystallization.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: June 28, 2022
    Assignee: GlassiMetal Technology, Inc.
    Inventors: Jong Hyun Na, Kyung-Hee Han, Marios D. Demetriou, William L. Johnson
  • Patent number: 10927440
    Abstract: The disclosure provides Zr—Ti—Cu—Ni—Al metallic glass-forming alloys and metallic glasses that have a high glass forming ability along with a high thermal stability of the supercooled liquid against crystallization.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: February 23, 2021
    Assignee: Glassimetal Technology, Inc.
    Inventors: Jong Hyun Na, Glenn Garrett, Kyung-Hee Han, Georg Kaltenboeck, Chase Crewdson, Marios D. Demetriou, William L. Johnson
  • Patent number: 10895004
    Abstract: The present disclosure provides Au-based alloys comprising Si capable of forming metallic glass matrix composites, and metallic glass matrix composites formed thereof. The Au-based metallic glass matrix composites according to the present disclosure comprise a primary-Au crystalline phase and a metallic glass phase and are free of any other phase. In certain embodiments, the metallic glass matrix composites according to the present disclosure satisfy the 18-Karat Gold Alloy Hallmark.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: January 19, 2021
    Assignee: Glassimetal Technology, Inc.
    Inventors: Jong Hyun Na, William L. Johnson, Marios D. Demetriou, Glenn Garrett, Kyung-Hee Han, Maximilien E. Launey
  • Patent number: 10801093
    Abstract: Pd—Cu—P metallic glass-forming alloy compositions and metallic glasses comprising at least one of Ag, Au, and Fe are provided, wherein the alloys demonstrate improved glass forming ability, as compared to Pd—Cu—P alloys free of Ag, Au, and Fe, and are capable of forming metallic glass rods with diameters in excess of 3 mm, and in some embodiments 26 mm or larger.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: October 13, 2020
    Assignee: GlassiMetal Technology, Inc.
    Inventors: Jong Hyun Na, Marios D. Demetriou, Maximilien Launey, William L. Johnson
  • Publication number: 20200316828
    Abstract: Highly specialized three-dimensional structural kinetic mixing particles to promote low surface energy regions for bubble and nucleation sites resulting in stronger, lighter weight foam having consistent cellular structures. The foam composition includes particles that continue to remain active as foam constituent fluids move during the foam expansion process. The continued mixing promotes better dispersion of blowing agents as well as increased mobility through better dispersion of reactive and nonreactive additives throughout the polymer during expansion of the foam thereby improving cellular consistency. The addition of kinetic mixing particles will produce similar results in any structural foam material that uses endothermic blowing agents, exothermic blowing agents and/or gas foam injection systems.
    Type: Application
    Filed: December 24, 2019
    Publication date: October 8, 2020
    Inventor: WILLIAM L. JOHNSON, SR.
  • Patent number: 10760562
    Abstract: A cryopump includes a refrigerator with at least first and second stages. A radiation shield surrounds the second stage and is in thermal contact with the first stage. The radiation shield includes a drain hole to permit cryogenic fluid to traverse through the drain hole during regeneration. The cryopump also includes a primary pumping surface supporting adsorbent in thermal contact with the second stage. The second stage array assembly includes a primary condensing surface, protected surfaces having adsorbent, and non-primary condensing surfaces. A baffle is disposed over the drain hole. The baffle redirects gas from an annular space disposed between the radiation shield and the vacuum vessel that attempts to traverse through the drain hole to prevent the gas from condensing on a non-primary condensing surface. The baffle directs gas to condense on the primary condensing surface.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: September 1, 2020
    Assignee: Edwards Vacuum LLC
    Inventors: Allen J. Bartlett, Michael A. Driscoll, Michael J. Eacobacci, Jr., William L. Johnson, Robert P. Sullivan, Sergei Syssoev, Mark A. Stira, John J. Casello
  • Publication number: 20200263267
    Abstract: The disclosure provides Fe—Cr—Ni—Mo—P—C—B metallic glass-forming alloys and metallic glasses that have a high glass forming ability along with a high thermal stability of the supercooled liquid against crystallization.
    Type: Application
    Filed: December 18, 2019
    Publication date: August 20, 2020
    Applicant: GlassiMetal Technology, Inc.
    Inventors: Jong Hyun Na, Kyung-Hee Han, Marios D. Demetriou, William L. Johnson
  • Patent number: 10723938
    Abstract: An improvement over known hydraulic fracturing fluids. Boundary layer kinetic mixing material is added to components of fracturing fluid wherein kinetic mixing material is a plurality of particles wherein at least 25% of particles are several types, i.e., having surface characteristics of thin walls, three dimensional wedge-like sharp blades, points, jagged bladelike surfaces, thin blade surfaces, three-dimensional blade shapes that may have shapes similar to a “Y”, “V” or “X” shape or other geometric shape, slightly curved thin walls having a shape similar to an egg shell shape, crushed hollow spheres, sharp bladelike features, 90° corners that are well defined, conglomerated protruding arms in various shapes, such as cylinders, rectangles, Y-shaped particles, X-shaped particles, octagons, pentagon, triangles, and diamonds.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: July 28, 2020
    Assignee: Ecopuro, LLC
    Inventor: William L. Johnson, Sr.
  • Patent number: 10682694
    Abstract: The disclosure is directed to an apparatus comprising feedback-assisted control of the heating process in rapid discharge heating and forming of metallic glass articles.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: June 16, 2020
    Assignees: Glassimetal Technology, Inc., Apple Inc.
    Inventors: Joseph P. Schramm, Marios D. Demetriou, William L. Johnson
  • Patent number: 10632529
    Abstract: A rapid discharge heating and forming apparatus is provided. The apparatus includes a source of electrical energy and at least two electrodes configured to interconnect the source of electrical energy to a metallic glass sample. The apparatus also includes a shaping tool disposed in forming relation to the metallic glass sample. The source of electrical energy and the at least two electrodes are configured to deliver a quantum of electrical energy to the metallic glass sample to heat the metallic glass sample. The shaping tool is configured to apply a deformational force to shape the heated sample to an article. The at least two electrodes have a yield strength of at least 200 MPa, a Young's modulus that is at least 25% higher than the metallic glass sample, and an electrical resistivity that is lower than the metallic glass sample by a factor of at least 3.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: April 28, 2020
    Assignee: Glassimetal Technology, Inc.
    Inventors: Chase Crewdson, Joseph P. Schramm, Marios D. Demetriou, William L. Johnson
  • Patent number: 10589349
    Abstract: Methods and apparatus for forming high aspect ratio metallic glass objects, including metallic glass sheets and tubes, by a melt deposition process are provided. In some methods and apparatus a molten alloy is deposited inside a channel formed by two substrates moving relative to each other, and shaped and quenched by conduction to the substrates in a manner that enables the molten alloy to vitrify without undergoing substantial shear flow.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: March 17, 2020
    Assignees: Glassimetal Technology, Inc., Apple Inc.
    Inventors: Marios D. Demetriou, Joseph P. Schramm, Georg Kaltenboeck, William L. Johnson
  • Publication number: 20200032823
    Abstract: A composition comprising a fluid, and a material dispersed in the fluid, the material made up of particles having a complex three dimensional surface area such as a sharp blade-like surface, the particles having an aspect ratio larger than 0.7 for promoting kinetic boundary layer mixing in a non-linear-viscosity zone. The composition may further include an additive dispersed in the fluid. The fluid may be a thermopolymer material. A method of extruding the fluid includes feeding the fluid into an extruder, feeding additives into the extruder, feeding a material into the extruder, passing the material through a mixing zone in the extruder to disperse the material within the fluid wherein the material migrates to a boundary layer of the fluid to promote kinetic mixing of the additives within the fluid, the kinetic mixing taking place in a non-linear viscosity zone.
    Type: Application
    Filed: April 4, 2019
    Publication date: January 30, 2020
    Inventor: WILLIAM L. JOHNSON, SR.
  • Patent number: 10458008
    Abstract: The disclosure is directed to Zr—Co—Ni—Al alloys that optionally comprise Ti and are capable of forming metallic glasses having a combination of high glass forming ability and high reflectivity. Compositional regions in the Zr—Co—Ni—Al and Zr—Ti—Co—Ni—Al alloys are disclosed where the metallic glass-forming alloys demonstrate a high glass forming ability while the metallic glasses formed from the alloys exhibit a high reflectivity. The metallic glass-forming alloys demonstrate a critical plate thickness of at least 2 mm, while the metallic glasses formed from the alloys demonstrate a CIELAB L* value of at least 78.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: October 29, 2019
    Assignee: GlassiMetal Technology, Inc.
    Inventors: Jong Hyun Na, Kyung-Hee Han, Glenn Garrett, Maximilien Launey, Marios D. Demetriou, William L. Johnson
  • Publication number: 20190322010
    Abstract: This invention relates to extruded composite materials specifically focusing on the increasing load bearing capacity and the overall strength of composites. Injectable conformable structural core materials are used to replace foam cells inside extruded composite materials thereby increasing the overall load bearing stability and strength. The core materials are tailored to have a desired CTE with respect to the structural materials. The core materials may also incorporate fibers and solid structural fillers for increasing the strength of the composite member. The objective is to enable composite materials to have the highest structural load bearing capability possible so that these technologies can be used as the replacement of wood, in aerospace applications and for other purposes.
    Type: Application
    Filed: January 12, 2019
    Publication date: October 24, 2019
    Inventor: WILLIAM L. JOHNSON, SR.
  • Patent number: 10357906
    Abstract: This invention relates to extruded composite materials specifically focusing on the increasing load bearing capacity and the overall strength of composites. Injectable conformable structural core materials are used to replace foam cells inside extruded composite materials thereby increasing the overall load bearing stability and strength. The core materials are tailored to have a desired CTE with respect to the structural materials. The core materials may also incorporate fibers and solid structural fillers for increasing the strength of the composite member. The objective is to enable composite materials to have the highest structural load bearing capability possible so that these technologies can be used as the replacement of wood, in aerospace applications and for other purposes.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: July 23, 2019
    Assignee: Ecopuro, LLC
    Inventor: William L. Johnson, Sr.
  • Patent number: RE47529
    Abstract: An Fe-base in-situ composite alloy, castable into 3-dimensional bulk objects is provided, where the alloy includes a matrix having one or both of a nano-crystalline phase and an amorphous phase, and a face-centered cubic crystalline phase. The alloy has an Fe content of more than 60 atomic percent.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: July 23, 2019
    Assignee: Apple Inc.
    Inventors: William L. Johnson, Choongnyun Paul Kim
  • Patent number: RE47748
    Abstract: The formation of amorphous porous bodies and in particular to a method of manufacturing such bodies from amorphous particulate materials. The method allows for the control of the volume fraction as well as the spatial and size distribution of gas-formed pores by control of the size distribution of the powder particulates. The method allows for the production of precursors of unlimited size, and because the softened state of the amorphous metals used in the method possesses visco-plastic properties, higher plastic deformations can be attained during consolidation as well as during expansion.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: December 3, 2019
    Assignee: California Institute of Technology
    Inventors: Marios Demetriou, William L. Johnson, Christopher Thomas Veazey, Jan Schroers