Patents by Inventor William L. Nighan

William L. Nighan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150245463
    Abstract: A linac-based X-ray system for cargo scanning and imaging applications uses linac design, RF power control, beam current control, and beam current pulse duration control to provide stable sequences of interleaved pulses having different energy levels, for example alternating 4 MeV and 6 MeV pulses or other energies where the difference in levels is at least approximately 1 MeV and less than approximately 5 MeV. The pulse repetition rate can be 100-400 pulses per second or more. In an embodiment, a cool down calculation is combined with automatic frequency control to provide stable energy and dose per pulse even upon restarting of pulsing after an “off” period of indeterminate duration.
    Type: Application
    Filed: February 27, 2014
    Publication date: August 27, 2015
    Applicant: ETM Electromatic, Inc.
    Inventors: William L. NIGHAN, JR., Maarten KORRINGA, John Howard ROLIN, Devin Kirk HENDERLONG
  • Patent number: 6970493
    Abstract: An optically pumped laser has a gain medium positioned inside of an optical resonator cavity and disposed about a resonator optical axis. An optical pumping source is positioned outside of the optical resonator cavity. A reflective coupler with a coupler body, and an interior volume passing therethrough is positioned proximal to the optical pumping source. Light from the pumping source passes into an entrance aperture of the reflective coupler to an exit aperture of the reflective coupler positioned distal to the optical pumping source. The interior volume of the reflective coupler is bounded by a reflective surface, an entrance aperture and the exit aperture, and is substantially transparent to radiation from the optical pumping source. The reflective surface has a high reflectivity matched to radiation from the optical pumping source.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: November 29, 2005
    Assignee: Spectra Physics, Inc.
    Inventors: Jason D. Henrie, William L. Nighan, Jr.
  • Patent number: 6931037
    Abstract: A diode pumped, multi axial mode, intracavity doubled, intracavity tripled laser, includes at least two resonator mirrors defining a resonator cavity. A laser crystal and a doubling crystal are positioned in the resonator cavity. A tripling crystal is also positioned in the resonator cavity. A diode pump source supplies a pump beam to the laser crystal and produces a laser crystal beam with a plurality of axial modes that are incident on the doubling crystal. This produces a frequency doubled output beam. Further, a diode pumped, multi axial mode, intracavity nonlinearly-converted laser is provided and includes at least two resonator mirrors defining a resonator cavity, a laser crystal and a nonlinear conversion apparatus positioned in the resonator cavity. A nonlinear conversion apparatus is also positioned in the resonator cavity.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: August 16, 2005
    Assignee: Spectra Physics Lasers, Inc.
    Inventors: William L. Nighan, Jr., John Cole
  • Patent number: 6922419
    Abstract: A diode-pumped solid-state laser has been invented that provides long Q-switched pulses at high repetition rate with high stability. The laser incorporates Nd:YVO4 as the gain medium.
    Type: Grant
    Filed: April 10, 1996
    Date of Patent: July 26, 2005
    Assignee: Spectra Physics Lasers, Inc.
    Inventors: William L. Nighan, Jr., Mark S. Keirstead, Tracy W. Vatter
  • Publication number: 20040170206
    Abstract: An optically pumped laser has a gain medium positioned inside of an optical resonator cavity and disposed about a resonator optical axis. An optical pumping source is positioned outside of the optical resonator cavity. A reflective coupler with a coupler body, and an interior volume passing therethrough is positioned proximal to the optical pumping source. Light from the pumping source passes into an entrance aperture of the reflective coupler to an exit aperture of the reflective coupler positioned distal to the optical pumping source. The interior volume of the reflective coupler is bounded by a reflective surface, an entrance aperture and the exit aperture, and is substantially transparent to radiation from the optical pumping source. The reflective surface has a high reflectivity matched to radiation from the optical pumping source.
    Type: Application
    Filed: December 16, 2003
    Publication date: September 2, 2004
    Inventors: Jason D. Henrie, William L. Nighan
  • Patent number: 6665328
    Abstract: An optically pumped laser has a gain medium positioned inside of an optical resonator cavity and disposed about a resonator optical axis. An optical pumping source is positioned outside of the optical resonator cavity. A reflective coupler with a coupler body, and an interior volume passing therethrough is positioned proximal to the optical pumping source. Light from the pumping source passes into an entrance aperture of the reflective coupler to an exit aperture of the reflective coupler positioned distal to the optical pumping source. The interior volume of the reflective coupler is bounded by a reflective surface, an entrance aperture and the exit aperture, and is substantially transparent to radiation from the optical pumping source. The reflective surface has a high reflectivity matched to radiation from the optical pumping source.
    Type: Grant
    Filed: September 22, 1999
    Date of Patent: December 16, 2003
    Assignee: Spectra Physics, Inc.
    Inventors: Jason D. Henrie, William L. Nighan, Jr.
  • Publication number: 20030206570
    Abstract: An optically pumped laser has a gain medium positioned inside of an optical resonator cavity and disposed about a resonator optical axis. An optical pumping source is positioned outside of the optical resonator cavity. A reflective coupler with a coupler body, and an interior volume passing therethrough is positioned proximal to the optical pumping source. Light from the pumping source passes into an entrance aperture of the reflective coupler to an exit aperture of the reflective coupler positioned distal to the optical pumping source. The interior volume of the reflective coupler is bounded by a reflective surface, an entrance aperture and the exit aperture, and is substantially transparent to radiation from the optical pumping source. The reflective surface has a high reflectivity matched to radiation from the optical pumping source.
    Type: Application
    Filed: April 14, 2003
    Publication date: November 6, 2003
    Inventors: Jason D. Henrie, William L. Nighan
  • Patent number: 6504858
    Abstract: A high power, diode pumped laser has a Nd:YVO4 gain media. Scaling to higher powers is achieved with the use of a low doped gain media, increasing the length of the gain media as well as increasing the pump volume. Passive cooling is extended to output powers of 10 W or greater.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: January 7, 2003
    Assignee: Spectra Physics Lasers, Inc.
    Inventors: Emily Cheng, Dave R Dudley, William L. Nighan, Jr., James D. Kafka, David E. Spence, David S. Bell
  • Publication number: 20020009111
    Abstract: A diode pumped, multi axial mode, intracavity doubled, intracavity tripled laser, includes at least two resonator mirrors defining a resonator cavity. A laser crystal and a doubling crystal are positioned in the resonator cavity. A tripling crystal is also positioned in the resonator cavity. A diode pump source supplies a pump beam to the laser crystal and produces a laser crystal beam with a plurality of axial modes that are incident on the doubling crystal. This produces a frequency doubled output beam. Further, a diode pumped, multi axial mode, intracavity nonlinearly-converted laser is provided and includes at least two resonator mirrors defining a resonator cavity, a laser crystal and a nonlinear conversion apparatus positioned in the resonator cavity. A nonlinear conversion apparatus is also positioned in the resonator cavity.
    Type: Application
    Filed: June 1, 2001
    Publication date: January 24, 2002
    Inventors: William L. Nighan, John Cole
  • Publication number: 20010028671
    Abstract: A high power, diode pumped laser has a Nd:YVO4 gain media. Scaling to higher powers is achieved with the use of a low doped gain media, increasing the length of the gain media as well as increasing the pump volume. Passive cooling is extended to output powers of 10 W or greater.
    Type: Application
    Filed: December 20, 2000
    Publication date: October 11, 2001
    Inventors: Emily Cheng, Dave R. Dudley, William L. Nighan, James D. Kafka, David E. Spence, David S. Bell
  • Patent number: 6287298
    Abstract: A diode pumped, multi axial mode, intracavity doubled laser has at least two resonator mirrors that define a resonator cavity. A Nd:YVO4 laser crystal and a LBO doubling crystal are positioned in the resonator cavity. A diode pump source supplies a pump beam to the laser crystal and produces a laser crystal beam with at least three axial modes that are incident on the doubling crystal. A frequency doubled output beam is generated with an output power of at least 1 watt.
    Type: Grant
    Filed: April 30, 1998
    Date of Patent: September 11, 2001
    Assignee: Spectra-Physics Lasers, Inc.
    Inventors: William L. Nighan, John Cole, Emily Cheng
  • Patent number: 6241720
    Abstract: A diode pumped, multi axial mode, intracavity doubled, intracavity tripled laser, includes at least two resonator mirrors defining a resonator cavity. A laser crystal and a doubling crystal are positioned in the resonator cavity. A tripling crystal is also positioned in the resonator cavity. A diode pump source supplies a pump beam to the laser crystal and produces a laser crystal beam with a plurality of axial modes that are incident on the doubling crystal. This produces a frequency doubled output beam. Further, a diode pumped, multi axial mode, intracavity nonlinearly-converted laser is provided and includes at least two resonator mirrors defining a resonator cavity, a laser crystal and a nonlinear conversion apparatus positioned in the resonator cavity. A nonlinear conversion apparatus is also positioned in the resonator cavity.
    Type: Grant
    Filed: May 19, 1995
    Date of Patent: June 5, 2001
    Assignee: Spectra Physics, Inc.
    Inventors: William L. Nighan, Jr., John Cole
  • Patent number: 6185235
    Abstract: A high power, diode pumped laser has a Nd:YVO4 gain media. Scaling to higher powers is achieved with the use of a low doped gain media, increasing the length of the gain media as well as increasing the pump volume. Passive cooling is extended to output powers of 10 W or greater .
    Type: Grant
    Filed: November 24, 1998
    Date of Patent: February 6, 2001
    Assignee: Spectra-Physics Lasers, Inc.
    Inventors: Emily Cheng, Dave R. Dudley, William L. Nighan, Jr., James D. Kafka, David E. Spence, David S. Bell
  • Patent number: 5999150
    Abstract: An electroluminescent display having reversible polarity and a method for reducing latent images in the electroluminescent panel is provided. The electroluminescent display includes a waveform generator for supplying voltage pulses to illuminate pixels within the electroluminescent panel. The electroluminescent display according to the invention periodically reverses the polarity of the voltage pulses to reduce latent images in the electroluminescent panel. The electroluminescent display preferably utilizes an asymmetrical drive scheme to provide a brighter electroluminescent display.
    Type: Grant
    Filed: April 17, 1996
    Date of Patent: December 7, 1999
    Assignee: Northrop Grumman Corporation
    Inventors: William L. Nighan, Fred A. Otter, Russell A. Budzilek
  • Patent number: 5991317
    Abstract: A diode pumped, multi axial mode, intracavity doubled, intracavity tripled laser, includes at least two resonator mirrors defining a resonator cavity. A laser crystal and a doubling crystal are positioned in the resonator cavity. A tripling crystal is also positioned in the resonator cavity. A diode pump source supplies a pump beam to the laser crystal and produces a laser crystal beam with a plurality of axial modes that are incident on the doubling crystal. This produces a frequency doubled output beam.Further, a diode pumped, multi axial mode, intracavity nonlinearly-converted laser is provided and includes at least two resonator mirrors defining a resonator cavity, a laser crystal and a nonlinear conversion apparatus positioned in the resonator cavity. A nonlinear conversion apparatus is also positioned in the resonator cavity.
    Type: Grant
    Filed: March 5, 1998
    Date of Patent: November 23, 1999
    Assignee: Spectra Physics Lasers, Inc.
    Inventors: William L. Nighan, Jr., John Cole
  • Patent number: 5907570
    Abstract: A diode pumped laser includes a resonator mirror and an output coupler, defining a laser resonator with a resonator optical axis. A strong thermal lens gain medium with a TEM.sub.00 mode diameter is mounted in the resonator along the resonator optical axis. The dopant level of the gain medium is in the range of 0.01 to less than 0.5 percent. A diode pump source supplies a pump beam to the gain medium in the laser resonator, and produces an output beam with a diameter larger than the TEM.sub.00 mode diameter to reduce thermal birefringence. A power source supplies power to the diode pump source. A polarizing element can be positioned in the resonator, along with a aperture stop The laser operates well over a large range of pump powers. Its slope efficiency in the TEM.sub.00 mode is greater than 40%, with an overall efficiency greater than 25%. One of the gain mediums used is Nd:YVO.sub.4. This material exhibits high gain and a short upper state lifetime.
    Type: Grant
    Filed: October 22, 1997
    Date of Patent: May 25, 1999
    Assignee: Spectra-Physics, Inc.
    Inventors: William L. Nighan, Mark S. Keirstead, Emily Cheng
  • Patent number: 5835513
    Abstract: A diode pumped laser includes a high reflector and an output coupler defining a resonator. The resonator includes a gain medium and a Q-switch and produces a fundamental beam. A first non-linear crystal is positioned extra-cavity of the resonator along a path of the fundamental beam. The first non-linear crystal generates a second harmonic beam from the fundamental beam. The first non-linear crystal is critically phased matched. A second non-linear crystal is portioned extra-cavity of the resonator along a path of the fundamental beam and the path of the second harmonic beam. The second non-linear crystal produces a third harmonic beam. The second non-linear crystal is critically phased matched.
    Type: Grant
    Filed: January 8, 1997
    Date of Patent: November 10, 1998
    Assignee: Spectra Physics, Inc.
    Inventors: Jan-Willem Pieterse, Alan B. Petersen, Chris Pohalski, Emily Cheng, Randall Lane, William L. Nighan, Jr.
  • Patent number: 5696780
    Abstract: A multi-axial mode frequency conversion system includes two resonators. At least two resonator mirrors define a first resonator cavity. A gain medium is positioned in the first resonator cavity. A pump source supplies energy to the gain medium. The first resonator cavity produces a first beam with a plurality of axial modes that are incident on a doubling crystal in the first resonator and produce a frequency doubled output beam. The first resonator cavity provides a sufficient number of axial modes to oscillate so that the doubled output beam has a noise of less than 3% RMS. At least two resonator mirrors define a second resonator cavity coupled to the output beam from the first resonator cavity. The second resonator is configured to provide resonant enhancement of at least a portion of the plurality of axial modes. A non-linear optical material is positioned in the second resonator and configured to produce a harmonic output beam.
    Type: Grant
    Filed: July 12, 1996
    Date of Patent: December 9, 1997
    Assignee: Spectra-Physics Lasers, Inc.
    Inventors: Jan-Willem Pieterse, James D. Kafka, Shinan S. Sheng, William L. Nighan, Jr.
  • Patent number: 5692965
    Abstract: A golf swing training device includes a golf club including a head coupled to a shaft. At least one laser device detachably coupled to the shaft of the golf club and produces at least one laser beam. A power source is coupled to the laser device. An attachment mechanism detachably secures the laser device to the golf club shaft in a manner such that the laser beam provides a feedback signal to the golfer that is indicative of a position and a motion of the head during the top of a backswing of the golf club by the golfer.
    Type: Grant
    Filed: December 13, 1995
    Date of Patent: December 2, 1997
    Inventors: William L. Nighan, Jr., Steven Arkley
  • Patent number: 5651020
    Abstract: A high power diode pumped laser is disclosed which has at least one resonator mirror and an output coupler. At least one laser crystal with strong thermal focussing properties is included. The laser includes at least one diode pump source supplying a pump beam to the laser crystal, producing a thermal lens in the laser crystal. The combination of the laser crystal, thermal lens, resonator mirrors and output coupler create a confocal-to-concentric resonator. An output beam is generated, which may be polarized. Further, a Q-switch may be included in the resonator, particularly when the laser crystal is Nd:YAG.
    Type: Grant
    Filed: May 1, 1995
    Date of Patent: July 22, 1997
    Assignee: Spectra-Physics Lasers, Inc.
    Inventors: William L. Nighan, Jr., Mark S. Keirstead, David R. Dudley