Patents by Inventor William L. Olbricht

William L. Olbricht has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10537725
    Abstract: A method for convection-enhanced delivery (CED) of compounds and an apparatus for use with the method are provided. The apparatus, an ultrasound transducer cannula assembly (TCA) apparatus, can be used for the delivery of a compound to a target in the body such as a cells, tissue or organ in a healthy or diseased state. The ultrasound TCA apparatus comprises a transducer cannula assembly (TCA) and an ultrasound system to enhance penetration of molecules in the target. The ultrasound system may be portable and pocket-sized. The inclusion of ultrasound in the apparatus improves the distribution volume of material four to six times over a convection-enhanced delivery system without ultrasound. Since the targeting can be more focused, less compound is needed, thus lowering the potential for harmful effects to the host and host cells.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: January 21, 2020
    Assignee: CORNELL UNIVERSITY
    Inventors: George K. Lewis, Jr., William L. Olbricht
  • Patent number: 10092271
    Abstract: There is set forth herein a uterine probe having one or more transducer for detecting a uterine parameter. The one or more parameter can be a fetal heart rate. The one or more parameter can be uterine contraction. In one embodiment a uterine probe can include a transducer operative to emit sound waves for detection of a fetal heart rate (FHR). In one embodiment a uterine probe can include a transducer operative to emit sound waves for detection of a uterine contraction. The one or more transducer can be of a common technology or can be of different technology. In one embodiment a uterine probe can include one or more transducer that is operative to be driven in different signaling configurations. A first signaling configuration can be a signaling configuration for detection of a fetal heart rate. A second signaling configuration can be a signaling configuration for detection of uterine contraction.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: October 9, 2018
    Assignee: CORNELL UNIVERSITY
    Inventors: George K. Lewis, Jr., William L. Olbricht, Steven Gelber, George K. Lewis, Sr.
  • Patent number: 9844585
    Abstract: An embodiment of the invention is directed to a microfabricated, silicon-based, Convection Enhanced Delivery (CED) device. The device comprises a silicon shank portion, at least one individual parylene channel disposed along at least a part of an entire length of the shank, wherein the channel has one or more dimensioned fluid exit ports disposed at one or more respective locations of the channel and a fluid (drug) input opening. The fluid input opening may be configured or adapted to be connected to a fluid reservoir and/or a pump and/or a meter and/or a valve or other suitable control device(s) or apparatus that supplies and/or delivers fluid (e.g., a drug) to the microfabricated device. The device may have multiple channels disposed side by side or in different surfaces of the device. The device may be rigid, or flexible, in which case a flexible device can be attached to a bio-degradable support scaffold that provides sufficient structural rigidity for insertion of the device into the target tissue.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: December 19, 2017
    Assignees: YALE UNIVERSITY, CORNELL UNIVERSITY
    Inventors: William L. Olbricht, Keith B. Neeves, Conor Foley, Russell T. Matthews, W. Mark Saltzman, Andrew Sawyer
  • Publication number: 20140371712
    Abstract: An embodiment of the invention is directed to a microfabricated, silicon-based, Convection Enhanced Delivery (CED) device. The device comprises a silicon shank portion, at least one individual parylene channel disposed along at least a part of an entire length of the shank, wherein the channel has one or more dimensioned fluid exit ports disposed at one or more respective locations of the channel and a fluid (drug) input opening. The fluid input opening may be configured or adapted to be connected to a fluid reservoir and/or a pump and/or a meter and/or a valve or other suitable control device(s) or apparatus that supplies and/or delivers fluid (e.g., a drug) to the microfabricated device. The device may have multiple channels disposed side by side or in different surfaces of the device. The device may be rigid, or flexible, in which case a flexible device can be attached to a bio-degradable support scaffold that provides sufficient structural rigidity for insertion of the device into the target tissue.
    Type: Application
    Filed: June 25, 2014
    Publication date: December 18, 2014
    Applicants: YALE UNIVERSITY, CORNELL UNIVERSITY
    Inventors: William L. Olbricht, Keith B. Neeves, Conor Foley, Russell T. Matthews, W. Mark Saltzman, Andrew Sawyer
  • Publication number: 20140350397
    Abstract: There is set forth herein a uterine probe having one or more transducer for detecting a uterine parameter. The one or more parameter can be a fetal heart rate. The one or more parameter can be uterine contraction. In one embodiment a uterine probe can include a transducer operative to emit sound waves for detection of a fetal heart rate (FHR). In one embodiment a uterine probe can include a transducer operative to emit sound waves for detection of a uterine contraction. The one or more transducer can be of a common technology or can be of different technology. In one embodiment a uterine probe can include one or more transducer that is operative to be driven in different signaling configurations. A first signaling configuration can be a signaling configuration for detection of a fetal heart rate. A second signaling configuration can be a signaling configuration for detection of uterine contraction.
    Type: Application
    Filed: April 13, 2012
    Publication date: November 27, 2014
    Applicant: CORNELL UNIVERSITY
    Inventors: George K. Lewis, JR., William L. Olbricht, Steven Gelber, George K. Lewis, SR.
  • Patent number: 8790317
    Abstract: An embodiment of the invention is directed to a microfabricated, silicon-based, Convection Enhanced Delivery (CED) device. The device comprises a silicon shank portion, at least one individual parylene channel disposed along at least a part of an entire length of the shank, wherein the channel has one or more dimensioned fluid exit ports disposed at one or more respective locations of the channel and a fluid (drug) input opening. The fluid input opening may be configured or adapted to be connected to a fluid reservoir and/or a pump and/or a meter and/or a valve or other suitable control device(s) or apparatus that supplies and/or delivers fluid (eg, a drug) to the microfabricated device. The device may have multiple channels disposed side by side or in different surfaces of the device.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: July 29, 2014
    Assignees: Cornell University, Yale University
    Inventors: William L. Olbricht, Keith B. Neeves, Conor Foley, Russell T. Mattews, W. Mark Saltzman, Andrew Sawyer
  • Publication number: 20130046230
    Abstract: A method for convection-enhanced delivery (CED) of compounds and an apparatus for use with the method are provided. The apparatus, an ultrasound transducer cannula assembly (TCA) apparatus, can be used for the delivery of a compound to a target in the body such as a cells, tissue or organ in a healthy or diseased state. The ultrasound TCA apparatus comprises a transducer cannula assembly (TCA) and an ultrasound system to enhance penetration of molecules in the target. The ultrasound system may be portable and pocket-sized. The inclusion of ultrasound in the apparatus improves the distribution volume of material four to six times over a convection-enhanced delivery system without ultrasound. Since the targeting can be more focused, less compound is needed, thus lowering the potential for harmful effects to the host and host cells.
    Type: Application
    Filed: March 4, 2011
    Publication date: February 21, 2013
    Applicant: CORNELL UNIVERSITY
    Inventors: George K. Lewis, JR., William L. Olbricht
  • Publication number: 20100098767
    Abstract: An embodiment of the invention is directed to a microfabr?cated, silicon-based, Convection Enhanced Delivery (CED) device The device comprises a silicon shank portion, at least one individual parylene channel disposed along at least a part of an entire length of the shank, wherein the channel has one or more dimensioned fluid exit ports disposed at one or more respective locations of the channel and a fluid (drug) input opening The fluid input opening may be configured or adapted to be connected to a fluid reservoir and/or a pump and/or a meter and/or a valve or other suitable control device(s) or apparatus that supplies and/or delivers fluid (e g, a drug) to the microfabricated device The device may have multiple channels disposed side by side or in different surfaces of the device
    Type: Application
    Filed: February 12, 2008
    Publication date: April 22, 2010
    Inventors: William L. Olbricht, Keith B. Neeves, Conor Foley, Russell T. Mattews, Mark W. Saltzman, Andrew Sawyer