Patents by Inventor William L. Schinski

William L. Schinski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230402636
    Abstract: The present disclosure relates generally to a carbon-neutral process for the generation of carbon-neutral hydrogen and carbon-neutral electricity. More specifically, the present disclosure relates to compositions, methods and apparatus employing a carbon-neutral process for generating electricity employing a liquid organic hydrogen carrier (LOHC) for supplying hydrogen for generating the carbon neutral electricity. The present disclosure also relates more specifically to carbon-neutral compositions consisting of liquid organic hydrogen carriers used for supplying hydrogen to generate electricity that may be regenerated in a carbon-neutral process using an apparatus with a net zero atmospheric emission of carbon oxides.
    Type: Application
    Filed: June 7, 2023
    Publication date: December 14, 2023
    Applicant: The Claire Technologies Corporation
    Inventors: Paul A. Allinson, Robert P. Hohmann, Curtis L. Munson, Dennis J. O'Rear, Steven F. Sciamanna, William L. Schinski, Charles R. Wilson, Alan W. Klaassen
  • Patent number: 11817610
    Abstract: The present disclosure relates generally to a carbon-neutral process for the generation of carbon-neutral hydrogen and carbon-neutral electricity. More specifically, the present disclosure relates to compositions, methods and apparatus employing a carbon-neutral process for generating electricity employing a liquid organic hydrogen carrier (LOHC) for supplying hydrogen for generating the carbon neutral electricity. The present disclosure also relates more specifically to carbon-neutral compositions consisting of liquid organic hydrogen carriers used for supplying hydrogen to generate electricity that may be regenerated in a carbon-neutral process using an apparatus with a net zero atmospheric emission of carbon oxides.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: November 14, 2023
    Assignee: The Claire Technologies Corporation
    Inventors: Paul A. Allinson, Robert P. Hohmann, Curtis L. Munson, Dennis J. O'Rear, Steven F. Sciamanna, William L. Schinski, Charles R. Wilson, Alan W. Klaassen
  • Publication number: 20220109175
    Abstract: The present disclosure relates generally to a carbon-neutral process for the generation of carbon-neutral hydrogen and carbon-neutral electricity. More specifically, the present disclosure relates to compositions, methods and apparatus employing a carbon-neutral process for generating electricity employing a liquid organic hydrogen carrier (LOHC) for supplying hydrogen for generating the carbon neutral electricity. The present disclosure also relates more specifically to carbon-neutral compositions consisting of liquid organic hydrogen carriers used for supplying hydrogen to generate electricity that may be regenerated in a carbon-neutral process using an apparatus with a net zero atmospheric emission of carbon oxides.
    Type: Application
    Filed: September 29, 2021
    Publication date: April 7, 2022
    Applicant: The Claire Technologies Corporation
    Inventors: Paul A. Allinson, Robert P. Hohmann, Curtis L. Munson, Dennis J. O'Rear, Steven F. Sciamanna, William L. Schinski, Charles R. Wilson, Alan W. Klaassen
  • Patent number: 9278894
    Abstract: Provided is a process for preparing oligomers from an alkane. The process comprises (a) contacting an alkane under dehydrogenation conditions in the presence of a dehydrogenation catalyst such as an iridium catalyst complex comprising iridium complexed with a benzimidiazolyl-containing ligand to form olefins, and (b) contacting the olefins prepared in step (a) under oligomerization conditions with an oligomerization catalyst such as a nickel, platinum or palladium metal catalyst complex comprising the metal complexed with a nitrogen containing bi- or tridentate ligand to prepare oligomers of the olefins, and hydrogenating the olefin oligomers. In one embodiment, the ligands of the catalyst complexes in step (a) and step (b) can be the same.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: March 8, 2016
    Assignees: Chevron U.S.A. Inc., Rutgers, The State University of New Jersey
    Inventors: Alan Stuart Goldman, Robert Timothy Stibrany, William L. Schinski
  • Patent number: 8841500
    Abstract: Provided is a process for preparing alkyl aromatic compounds. The process comprises contacting an alkane under dehydrogenation conditions in the presence of a dehydrogenation catalyst, e.g., a pincer iridium catalyst, to form olefins, and then contacting the olefins generated with an aromatic compound under alkylation conditions. Both reactions are conducted in a single reactor, and occur simultaneously.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: September 23, 2014
    Assignees: Chevron U.S.A. Inc., Rutgers, The State University of New Jersey
    Inventors: Alan Stuart Goldman, Long Van Dinh, William L. Schinski
  • Patent number: 8641991
    Abstract: The present invention is generally directed to methods and systems for processing biomass into usable products, wherein such methods and systems involve an integration into conventional refineries and/or conventional refinery processes. Such methods and systems provide for an enhanced ability to utilize biofuels efficiently, and they can, at least in some embodiments, be used in hybrid refineries alongside conventional refinery processes.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: February 4, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventor: William L. Schinski
  • Publication number: 20130116492
    Abstract: Provided is a process for preparing alkyl aromatic compounds. The process comprises contacting an alkane under dehydrogenation conditions in the presence of a dehydrogenation catalyst, e.g., a pincer iridium catalyst, to form olefins, and then contacting the olefins generated with an aromatic compound under alkylation conditions. Both reactions are conducted in a single reactor, and occur simultaneously.
    Type: Application
    Filed: September 12, 2012
    Publication date: May 9, 2013
    Applicants: CHEVRON U.S.A. INC., RUTGERS, THE STATE UNIVERSITY OF NJ
    Inventors: Alan Stuart Goldman, Long Van Dinh, William L. Schinski
  • Publication number: 20130090503
    Abstract: Provided is a process for preparing oligomers from an alkane. The process comprises (a) contacting an alkane under dehydrogenation conditions in the presence of a dehydrogenation catalyst such as an iridium catalyst complex comprising iridium complexed with a benzimidiazolyl-containing ligand to form olefins, and (b) contacting the olefins prepared in step (a) under oligomerization conditions with an oligomerization catalyst such as a nickel, platinum or palladium metal catalyst complex comprising the metal complexed with a nitrogen containing bi- or tridentate ligand to prepare oligomers of the olefins, and hydrogenating the olefin oligomers. In one embodiment, the ligands of the catalyst complexes in step (a) and step (b) can be the same.
    Type: Application
    Filed: September 12, 2012
    Publication date: April 11, 2013
    Applicants: CHEVRON U.S.A. INC., RUTGERS, THE STATE UNIVERSITY OF NJ
    Inventors: Alan Stuart Goldman, Robert Timothy Stibrany, William L. Schinski
  • Patent number: 8258195
    Abstract: A method is disclosed for converting syngas to Fischer-Tropsch (F-T) hydrocarbon products. A synthesis gas including carbon monoxide and hydrogen gas is provided to a F-T reactor. Also, acetylene is supplied to the F-T reactor. The ratio of the volume of acetylene to the volume of synthesis gas is at least 0.01. The synthesis gas and acetylene are reacted under suitable reaction conditions and in the presence of a catalyst to produce F-T hydrocarbon products. The F-T hydrocarbon products are then recovered from the reactor. The synthesis gas and acetylene may be provided in a combined feed stream or introduced separately into the reactor. The acetylene enhanced syngas conversion in a F-T reactor results in the synthesis of F-T products which have a tighter distribution of intermediate length carbon products than do F-T products synthesized according to conventional methods.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: September 4, 2012
    Assignees: Chevron U.S.A. Inc., Commonwealth Scientific and Industrial Research Organisation
    Inventors: Charles L. Kibby, Minquan Cheng, Yun Lei, David Lawrence Trimm, William L. Schinski
  • Publication number: 20120172459
    Abstract: A method is disclosed for converting syngas to Fischer-Tropsch (F-T) hydrocarbon products. A synthesis gas including carbon monoxide and hydrogen gas is provided to a F-T reactor. Also, acetylene is supplied to the F-T reactor. The ratio of the volume of acetylene to the volume of synthesis gas is at least 0.01. The synthesis gas and acetylene are reacted under suitable reaction conditions and in the presence of a catalyst to produce F-T hydrocarbon products. The F-T hydrocarbon products are then recovered from the reactor. The synthesis gas and acetylene may be provided in a combined feed stream or introduced separately into the reactor. The acetylene enhanced syngas conversion in a F-T reactor results in the synthesis of F-T products which have a tighter distribution of intermediate length carbon products than do F-T products synthesized according to conventional methods.
    Type: Application
    Filed: March 15, 2012
    Publication date: July 5, 2012
    Applicants: Commonwealth Scientific and Industrial Research Organisation, Chevron U.S.A. Inc.
    Inventors: Charles L. Kibby, Minquan Cheng, Yun Lei, David Lawrence Trimm, William L. Schinski
  • Patent number: 8163808
    Abstract: A method is disclosed for converting syngas to Fischer-Tropsch (F-T) hydrocarbon products. A synthesis gas including carbon monoxide and hydrogen gas is provided to a F-T reactor. Also, acetylene is supplied to the F-T reactor. The ratio of the volume of acetylene to the volume of synthesis gas is at least 0.01. The synthesis gas and acetylene are reacted under suitable reaction conditions and in the presence of a catalyst to produce F-T hydrocarbon products. The F-T hydrocarbon products are then recovered from the reactor. The synthesis gas and acetylene may be provided in a combined feed stream or introduced separately into the reactor. The acetylene enhanced syngas conversion in a F-T reactor results in the synthesis of F-T products which have a tighter distribution of intermediate length carbon products than do F-T products synthesized according to conventional methods.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: April 24, 2012
    Assignees: Chevron U.S.A. Inc., Commonwealth Scientific and Industrial Research Organisation
    Inventors: Charles L. Kibby, Minquan Cheng, Yun Lei, David Lawrence Trimm, William L. Schinski
  • Patent number: 8022108
    Abstract: Novel methods of treating a Fischer-Tropsch product stream with an acid are disclosed. Such methods are capable of removing contamination from the Fischer-Tropsch product stream such that plugging of the catalyst beds of a subsequent hydroprocessing step is substantially reduced.
    Type: Grant
    Filed: July 2, 2003
    Date of Patent: September 20, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Lucy M. Bull, Donald L. Kuehne, William L. Schinski, Philippus Rudolf Heydenrich, Richard O. Moore, Jr., Quintin John Beukes, Gianni Guilio Eligio Bacco Rodriquez
  • Publication number: 20090056225
    Abstract: The present invention is generally directed to methods and systems for processing biomass into usable products, wherein such methods and systems involve an integration into conventional refineries and/or conventional refinery processes. Such methods and systems provide for an enhanced ability to utilize biofuels efficiently, and they can, at least in some embodiments, be used in hybrid refineries alongside conventional refinery processes.
    Type: Application
    Filed: August 30, 2007
    Publication date: March 5, 2009
    Applicant: Chevron U.S.A. Inc.
    Inventor: William L. Schinski
  • Publication number: 20090060803
    Abstract: The present invention is generally directed to methods and systems for processing biomass into usable products, wherein such methods and systems involve an integration into conventional refineries and/or conventional refinery processes. Such methods and systems provide for an enhanced ability to utilize biofuels efficiently, and they can, at least in some embodiments, be used in hybrid refineries alongside conventional refinery processes.
    Type: Application
    Filed: August 30, 2007
    Publication date: March 5, 2009
    Applicant: Chevron U.S.A. Inc.
    Inventor: William L. Schinski
  • Patent number: 7282617
    Abstract: A process for making medium and long chain alkylaromatics and alkylphenols having a high level of anti-Markovnikov addition of the alkyl group. The alkylaromatics and alkylphenols made by the process of the present invention have enhanced stability and are particularly well suited to make highly stable oil additives and enhanced oil recovery surfactants.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: October 16, 2007
    Assignee: Chevron U.S.A. Inc.
    Inventors: William L. Schinski, Curt B. Campbell
  • Patent number: 6849774
    Abstract: Methods for separating di-olefins from mono-olefins, and olefins from non-olefins such as paraffins, oxygenates and aromatics; are provided. The methods use metal salts which complex both mono-olefins and di-olefins, but which selectively complex di-olefins in the presence of mono-olefins. The metal salts are dissolved or suspended in ionic liquids, which tend to have virtually no vapor pressure. Preferred salts are Group IB salts, more preferably silver and copper salts. A preferred silver salt is silver tetrafluoroborate. A preferred copper salt is silver CuOTf. Preferred ionic liquids are those which form stable solutions, suspensions or dispersions of the metal salts, which do not dissolve unwanted non-olefins, and which do not isomerize the mono- or di-olefins. The equivalents of the metal salt can be adjusted so that di-olefins are selectively adsorbed from mixtures of mono- and di-olefins. Alternatively, both mono- and di-olefins can be adsorbed, and the mono-olefins selectively desorbed.
    Type: Grant
    Filed: December 31, 2001
    Date of Patent: February 1, 2005
    Assignee: Chevron U.S.A. Inc.
    Inventors: Laura C. Boudreau, Michael S. Driver, Curt L. Munson, William L. Schinski
  • Patent number: 6703535
    Abstract: A process for upgrading a Fischer-Tropsch feedstock which comprises (a) recovering from a Fischer-Tropsch reactor a Fischer-Tropsch wax fraction and a Fischer-Tropsch condensate fraction, wherein the Fischer-Tropsch condensate fraction contains alcohols boiling below about 370° C.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: March 9, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventors: David R. Johnson, Christopher A. Simmons, Donald H. Mohr, Stephen J. Miller, Stephen K. Lee, William L. Schinski, Michael S. Driver, William J. Cannella
  • Publication number: 20030199719
    Abstract: A process for upgrading a Fischer-Tropsch feedstock which comprises (a) recovering from a Fischer-Tropsch reactor a Fischer-Tropsch wax fraction and a Fischer-Tropsch condensate fraction, wherein the Fischer-Tropsch condensate fraction contains alcohols boiling below about 370° C.
    Type: Application
    Filed: April 18, 2002
    Publication date: October 23, 2003
    Inventors: David R. Johnson, Christopher A. Simmons, Donald H. Mohr, Stephen J. Miller, Stephen K. Lee, William L. Schinski, Michael S. Driver, William J. Cannella
  • Patent number: 6623659
    Abstract: Methods for separating olefins from non-olefins, such as paraffins, including cycloparaffins, oxygenates and aromatics, are provided. The methods use metal salts to complex olefins, allowing the non-olefins to be separated by a variety of methods, including decantation and distillation. The metal salts are dissolved in ionic liquids, which tend to have virtually no vapor pressure, and which poorly solubilize the non-olefins. Accordingly, the non-olefins phase separate well, and can be distilled without carrying over any of the ionic liquid into the distillate. Preferred salts are Group IB salts, more preferably silver salts. A preferred silver salt is silver tetrafluoroborate. Preferred ionic liquids are those which form stable solutions or dispersions of the metal salts, and which do not dissolve the non-olefins. Further, if the olefins are subject to isomerization, the ionic liquid is preferably relatively non-acidic.
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: September 23, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventors: Curtis L. Munson, Laura C. Boudreau, Michael S. Driver, William L. Schinski
  • Publication number: 20030150776
    Abstract: A process for increasing the yield of C10 plus hydrocarbon products from a Fischer-Tropsch plant which comprises the steps of (a) separating a Fischer-Tropsch product into a wax fraction and a condensate fraction; (b) dewaxing the wax fraction to produce a high boiling intermediate; (c) hydrofinishing the high boiling intermediate; (d) dehydrating the alcohols in the condensate fraction to convert them into olefins; (e) oligomerizing the olefins to form higher molecular weight hydrocarbons; (f) hydrofinishing the oligomerization mixture; and (g) and recovering a C10 plus hydrocarbon product from the hydrofinishing zone.
    Type: Application
    Filed: February 8, 2002
    Publication date: August 14, 2003
    Inventors: David R. Johnson, Christopher A. Simmons, Donald H. Mohr, Stephen J. Miller, Stephen K. Lee, William L. Schinski, Michael S. Driver