Patents by Inventor William Light

William Light has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240084380
    Abstract: The present disclosure provides compositions and related methods, e.g., for preparing immobilized nucleic acid nanostructures using compaction oligonucleotides. In some embodiments, rolling circle amplification reaction can be conducted with compaction oligonucleotides on-support or in-solution to generate concatemer molecules having multiple copies of a polynucleotide unit arranged in tandem. Each polynucleotide unit comprises a sequence-of-interest and at least one universal adaptor sequence that binds one end of a compaction oligonucleotide. The 5? and 3? regions of the compaction oligonucleotide can hybridize to the concatemer to pull together distal portions of the concatemer causing compaction of the concatemer to form a nanostructure. Nanostructures having tighter size and shape compared to concatemers generated in the absence of the compaction oligonucleotides.
    Type: Application
    Filed: August 15, 2023
    Publication date: March 14, 2024
    Inventors: Sinan ARSLAN, Michael KIM, Ramreddy TIPANNA, Chunhong ZHOU, William LIGHT, Hua YU, Junhua ZHAO, Tsung-Li LIU
  • Patent number: 11891651
    Abstract: The present disclosure provides compositions and methods that employ the compositions for conducting pairwise sequencing and for generating concatemer template molecules for pairwise sequencing. The concatemers can be generated using a rolling circle amplification reaction which is conducted either on-support, or conducted in-solution and then distributed onto a support. The rolling circle amplification reaction generates concatemers containing tandem copies of a sequence of interest and at least one universal adaptor sequence. An increase in the number of tandem copies in a given concatemer increases the number of sites along the concatemer for hybridizing to multiple sequencing primers which serve as multiple initiation sites for polymerase-catalyzed sequencing reactions. When the sequencing reaction employs detectably labeled nucleotides and/or detectably labeled multivalent molecules (e.g.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: February 6, 2024
    Assignee: Element Biosciences, Inc.
    Inventors: Sinan Arslan, Junhua Zhao, Molly He, Samantha Snow, William Light, Matthew Kellinger, Michael Previte, Michael Kim, Hua Yu, Yu-Hsien Hwang-Fu, Marco Tjioe, Andrew Boddicker
  • Patent number: 11859241
    Abstract: The present disclosure provides compositions and methods that employ the compositions for conducting pairwise sequencing and for generating concatemer template molecules for pairwise sequencing. The concatemers can be generated using a rolling circle amplification reaction which is conducted either on-support, or conducted in-solution and then distributed onto a support. The rolling circle amplification reaction generates concatemers containing tandem copies of a sequence of interest and at least one universal adaptor sequence. An increase in the number of tandem copies in a given concatemer increases the number of sites along the concatemer for hybridizing to multiple sequencing primers which serve as multiple initiation sites for polymerase-catalyzed sequencing reactions. When the sequencing reaction employs detectably labeled nucleotides and/or detectably labeled multivalent molecules (e.g.
    Type: Grant
    Filed: February 8, 2023
    Date of Patent: January 2, 2024
    Assignee: Element Biosciences, Inc.
    Inventors: Sinan Arslan, Junhua Zhao, Molly He, Samantha Snow, William Light, Matthew Kellinger, Michael Previte, Michael Kim, Hua Yu, Yu-Hsien Hwang-Fu, Marco Tjioe, Andrew Boddicker, Mark Ambroso, Tyler Lopez, Michael Klein, Virginia Saade
  • Patent number: 11781185
    Abstract: Provided herein are fluorescently-labeled nucleotide conjugates for nucleic acid analysis. Also provided are reagents used for forming binding complexes between a fluorescently-labeled nucleotide conjugate and a target nucleic acid sequence in the presence of one or more reagents disclosed herein. Binding complexes can be detected in the presence of the one or more reagents. For example, the one or more reagents may contain a photobleaching reducing agent configured to reduce photobleaching resulting from use of the fluorescently-labeled nucleotide conjugate to form the binding complex in a nucleic acid analysis. Such nucleic acid analysis may be used to identify sites of nucleobase binding or incorporation between the target nucleic acid sequence and one or more nucleotide moieties of the fluorescently-labeled nucleotide conjugate in a nucleic acid sequence reaction.
    Type: Grant
    Filed: September 19, 2022
    Date of Patent: October 10, 2023
    Assignee: ELEMENT BIOSCIENCES, INC.
    Inventors: Sinan Arslan, Molly He, Michael Previte, Ramreddy Tippana, Hua Yu, William Light, Junhua Zhao
  • Publication number: 20230279382
    Abstract: The present disclosure provides compositions comprising nucleic acid single-stranded splint strands, including kits, and methods that employ the single-stranded splint strands. The single-stranded splint strands can hybridize to portions of linear library molecules to form circularized library-splint complexes having a nick, where the nick can be ligated to form covalently closed circular molecules which can be subjected to downstream amplification and sequencing workflows.
    Type: Application
    Filed: April 20, 2022
    Publication date: September 7, 2023
    Inventors: William LIGHT, Ryan KELLEY, Junhua ZHAO
  • Publication number: 20230279483
    Abstract: The present disclosure provides compositions comprising nucleic acid double-stranded splint adaptors, including kits, and methods that employ the double-stranded splint adaptors. The double-stranded splint adaptors (200) can be used in a one-pot, multi-enzyme reaction to introduce one or more new adaptor sequences into a library molecule. The double-stranded splint adaptor (200) comprises a first splint strand (long splint strand (300)) and a second splint strand (short splint strand (400)), where the first and second splint strands are hybridized together to form the double-stranded splint adaptor (200) having a double-stranded region and two flanking single-stranded regions. The second splint strand (400) carries the new adaptor sequence(s) to be introduced, such as for example a universal binding sequence and/or an index sequence.
    Type: Application
    Filed: April 20, 2022
    Publication date: September 7, 2023
    Inventors: William LIGHT, Samantha SNOW, Junhua ZHAO
  • Publication number: 20230235392
    Abstract: Provided herein are methods for generating circular nucleic acid molecules and circular nucleic acid libraries. The methods can be used to generate clonal populations of target nucleic acid molecules for downstream applications such as sequencing. Nucleic acid sequence methods, systems and kits are also provided for sequencing circular nucleic acid molecules.
    Type: Application
    Filed: May 19, 2021
    Publication date: July 27, 2023
    Inventors: Sinan ARSLAN, Junhua ZHAO, Molly HE, William LIGHT, Matthew KELLINGER, Michael PREVITE
  • Publication number: 20230203564
    Abstract: The present disclosure provides compositions and methods that employ the compositions for conducting pairwise sequencing and for generating concatemer template molecules for pairwise sequencing. The concatemers can be generated using a rolling circle amplification reaction which is conducted either on-support, or conducted in-solution and then distributed onto a support. The rolling circle amplification reaction generates concatemers containing tandem copies of a sequence of interest and at least one universal adaptor sequence. An increase in the number of tandem copies in a given concatemer increases the number of sites along the concatemer for hybridizing to multiple sequencing primers which serve as multiple initiation sites for polymerase-catalyzed sequencing reactions. When the sequencing reaction employs detectably labeled nucleotides and/or detectably labeled multivalent molecules (e.g.
    Type: Application
    Filed: February 8, 2023
    Publication date: June 29, 2023
    Inventors: Sinan ARSLAN, Junhua ZHAO, Molly HE, Samantha SNOW, William LIGHT, Matthew KELLINGER, Michael PREVITE, Michael KIM, Hua YU, Yu-Hsien HWANG-FU, Marco TJIOE, Andrew BODDICKER, Mark AMBROSO, Tyler LOPEZ, Michael KLEIN, Virginia SAADE
  • Publication number: 20230193354
    Abstract: The disclosure provides compositions and methods that employ the compositions for conducting pairwise sequencing and for generating concatemer template molecules for pairwise sequencing. The concatemers can be generated using a rolling circle amplification reaction which is conducted either on-support, or conducted in-solution and then distributed onto a support. The rolling circle amplification reaction generates concatemers containing tandem copies of a sequence of interest and at least one universal adaptor sequence. An increase in the number of tandem copies in a given concatemer increases the number of sites along the concatemer for hybridizing to multiple sequencing primers which serve as multiple initiation sites for polymerase-catalyzed sequencing reactions. When the sequencing reaction employs detectably labeled nucleotides and/or detectably labeled multivalent molecules (e.g.
    Type: Application
    Filed: November 22, 2022
    Publication date: June 22, 2023
    Inventors: Sinan ARSLAN, Junhua ZHAO, Molly HE, Samantha SNOW, William LIGHT, Matthew KELLINGER, Michael PREVITE, Michael KIM, Hua YU, Yu-Hsien HWANG-FU, Marco TJIOE, Andrew BODDICKER
  • Publication number: 20230065693
    Abstract: The present disclosure provides compositions and methods that employ the compositions for conducting nucleic acid sequencing workflows, where the workflows include library preparation, immobilization and amplification of the library molecules to form immobilized template molecules, and sequencing the template molecules. In some embodiments, the compositions comprise reagents used to conduct nucleic acid sequencing workflows.
    Type: Application
    Filed: September 19, 2022
    Publication date: March 2, 2023
    Inventors: Sinan ARSLAN, Molly HE, Michael PREVITE, Ramreddy TIPPANA, Hua YU, William LIGHT, Junhua ZHAO
  • Patent number: 11535892
    Abstract: The present disclosure provides compositions and methods that employ the compositions for conducting pairwise sequencing and for generating concatemer template molecules for pairwise sequencing. The concatemers can be generated using a rolling circle amplification reaction which is conducted either on-support, or conducted in-solution and then distributed onto a support. The rolling circle amplification reaction generates concatemers containing tandem copies of a sequence of interest and at least one universal adaptor sequence. An increase in the number of tandem copies in a given concatemer increases the number of sites along the concatemer for hybridizing to multiple sequencing primers which serve as multiple initiation sites for polymerase-catalyzed sequencing reactions. When the sequencing reaction employs detectably labeled nucleotides and/or detectably labeled multivalent molecules (e.g.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: December 27, 2022
    Assignee: Element Biosciences, Inc.
    Inventors: Sinan Arslan, Junhua Zhao, Molly He, Samantha Snow, William Light, Matthew Kellinger, Michael Previte, Michael Kim, Hua Yu, Yu-Hsien Hwang-Fu, Marco Tjioe, Andrew Boddicker
  • Publication number: 20220403463
    Abstract: The present disclosure provides compositions and methods that employ the compositions for conducting pairwise sequencing and for generating concatemer template molecules for pairwise sequencing. The concatemers can be generated using a rolling circle amplification reaction which is conducted either on-support, or conducted in-solution and then distributed onto a support. The rolling circle amplification reaction generates concatemers containing tandem copies of a sequence of interest and at least one universal adaptor sequence. An increase in the number of tandem copies in a given concatemer increases the number of sites along the concatemer for hybridizing to multiple sequencing primers which serve as multiple initiation sites for polymerase-catalyzed sequencing reactions. When the sequencing reaction employs detectably labeled nucleotides and/or detectably labeled multivalent molecules (e.g.
    Type: Application
    Filed: July 15, 2021
    Publication date: December 22, 2022
    Inventors: Sinan ARSLAN, Junhua ZHAO, Molly HE, Samantha SNOW, William LIGHT, Matthew KELLINGER, Michael PREVITE, Michael KIM, Hua YU, Yu-Hsien HWANG-FU, Marco TJIOE, Andrew BODDICKER
  • Publication number: 20220403445
    Abstract: The present disclosure provides compositions and methods that employ the compositions for conducting pairwise sequencing and for generating concatemer template molecules for pairwise sequencing. The concatemers can be generated using a rolling circle amplification reaction which is conducted either on-support, or conducted in-solution and then distributed onto a support. The rolling circle amplification reaction generates concatemers containing tandem copies of a sequence of interest and at least one universal adaptor sequence. An increase in the number of tandem copies in a given concatemer increases the number of sites along the concatemer for hybridizing to multiple sequencing primers which serve as multiple initiation sites for polymerase-catalyzed sequencing reactions. When the sequencing reaction employs detectably labeled nucleotides and/or detectably labeled multivalent molecules (e.g.
    Type: Application
    Filed: November 8, 2021
    Publication date: December 22, 2022
    Inventors: Sinan ARSLAN, Junhua ZHAO, Molly HE, Samantha SNOW, William LIGHT, Matthew KELLINGER, Michael PREVITE, Michael KIM, Hua YU, Yu-Hsien HWANG-FU, Marco TJIOE, Andrew BODDICKER
  • Patent number: 11427855
    Abstract: The present disclosure provides compositions and methods that employ the compositions for conducting pairwise sequencing and for generating concatemer template molecules for pairwise sequencing. The concatemers can be generated using a rolling circle amplification reaction which is conducted either on-support, or conducted in-solution and then distributed onto a support. The rolling circle amplification reaction generates concatemers containing tandem copies of a sequence of interest and at least one universal adaptor sequence. An increase in the number of tandem copies in a given concatemer increases the number of sites along the concatemer for hybridizing to multiple sequencing primers which serve as multiple initiation sites for polymerase-catalyzed sequencing reactions. When the sequencing reaction employs detectably labeled nucleotides and/or detectably labeled multivalent molecules (e.g.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: August 30, 2022
    Assignee: Element Biosciences, Inc.
    Inventors: Sinan Arslan, Junhua Zhao, Molly He, Samantha Snow, William Light, Matthew Kellinger, Michael Previte, Michael Kim, Hua Yu, Yu-Hsien Hwang-Fu, Marco Tjioe, Andrew Boddicker
  • Publication number: 20220130505
    Abstract: Methods, systems, and computer program products for pharmacy substitutions obtain claims data associated with a claim for a prescription associated with a patient; determine, based on the claims data, a universal identifier for the prescription; obtain drug diagnosis data associated with known diagnoses for universal identifiers associated with prescriptions; determine, based on the universal identifier and the drug diagnosis data, a likely diagnosis associated with the prescription; determine, based on the claims data, a cost associated with the likely diagnosis; determine, for the likely diagnosis, using a machine learning model trained based on a training dataset, a potential alternative prescription to the prescription; update, based on user input, the training dataset to include the likely diagnosis associated with the alternative prescription; and train the machine learning model based on the updated training dataset.
    Type: Application
    Filed: October 26, 2021
    Publication date: April 28, 2022
    Inventors: Eric Brannon Molitor, Thomas William Light, Sean Charles O'Brien
  • Patent number: 11236388
    Abstract: The present disclosure provides compositions and methods that employ the compositions for conducting pairwise sequencing and for generating concatemer template molecules for pairwise sequencing. The concatemers can be generated using a rolling circle amplification reaction which is conducted either on-support, or conducted in-solution and then distributed onto a support. The rolling circle amplification reaction generates concatemers containing tandem copies of a sequence of interest and at least one universal adaptor sequence. An increase in the number of tandem copies in a given concatemer increases the number of sites along the concatemer for hybridizing to multiple sequencing primers which serve as multiple initiation sites for polymerase-catalyzed sequencing reactions. When the sequencing reaction employs detectably labeled nucleotides and/or detectably labeled multivalent molecules (e.g.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: February 1, 2022
    Assignee: Element Biosciences, Inc.
    Inventors: Sinan Arslan, Junhua Zhao, Molly He, Samantha Snow, William Light, Matthew Kellinger, Michael Previte
  • Patent number: 11220707
    Abstract: The present disclosure provides compositions and methods that employ the compositions for conducting pairwise sequencing and for generating concatemer template molecules for pairwise sequencing. The concatemers can be generated using a rolling circle amplification reaction which is conducted either on-support, or conducted in-solution and then distributed onto a support. The rolling circle amplification reaction generates concatemers containing tandem copies of a sequence of interest and at least one universal adaptor sequence. An increase in the number of tandem copies in a given concatemer increases the number of sites along the concatemer for hybridizing to multiple sequencing primers which serve as multiple initiation sites for polymerase-catalyzed sequencing reactions. When the sequencing reaction employs detectably labeled nucleotides and/or detectably labeled multivalent molecules (e.g.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: January 11, 2022
    Assignee: Element Biosciences, Inc.
    Inventors: Sinan Arslan, Junhua Zhao, Molly He, Samantha Snow, William Light, Matthew Kellinger, Michael Previte
  • Publication number: 20070219335
    Abstract: A stabilized hemoglobin solution is contacted with polymerizing agent. The stabilized hemoglobin solution includes stabilized tetrameric hemoglobin. At least a portion of the stabilized tetrameric hemoglobin is polymerized by reaction with the polymerizing agent, thereby producing a polymerized hemoglobin solution. In one embodiment, the stabilized hemoglobin solution includes a filtrate formed by filtrating polymerized solution of native hemoglobin through a filter having a molecular weight cut off of about 100 kD.
    Type: Application
    Filed: October 19, 2006
    Publication date: September 20, 2007
    Inventors: Thomas Page, Jose Torres, William Light
  • Publication number: 20060219635
    Abstract: A high-density filtration module for separating a liquid from a high viscosity and/or high solids feed comprising sheets of porous filtration membrane being disposed generally concentrically about a central porous tube. The membranes are separated by a sheet of feed liquid spacer material having two sets of generally parallel ribs of similar size regularly spaced apart from one another which project from opposite surfaces of a thin central layer. Permeate carrier layers are disposed adjacent discharge surfaces of the sheet membranes. The sets of ribs are arranged so that each rib is located substantially equidistant from the two adjacent ribs in the opposite set, and the central layer is about 40% or less as thick as the base of a rib where it joins the central layer.
    Type: Application
    Filed: March 21, 2006
    Publication date: October 5, 2006
    Applicant: SPECIAL MEMBRANE TECHNOLOGIES, INC.
    Inventors: Michael McCague, William Light
  • Publication number: 20060160724
    Abstract: The invention relates to a method for preserving the stability of a hemoglobin blood substitute comprising maintaining the hemoglobin blood substitute in an atmosphere substantially free of oxygen. The method for preserving the deoxygenated hemoglobin blood substitute comprises maintaining the deoxygenated blood substitute in an oxygen barrier film overwrap package, wherein at least one face of the overwrap package comprises a transparent laminate material and wherein at least one other face of the overwrap package comprises a foil laminate material. The preserved deoxygenated hemoglobin blood substitute comprises a deoxygenated hemoglobin blood substitute and an oxygen barrier film overwrap package wherein at least one face of the overwrap package comprises a transparent laminate material and wherein at least one other face of the overwrap package comprises a foil laminate material.
    Type: Application
    Filed: March 21, 2006
    Publication date: July 20, 2006
    Inventors: Maria Gawryl, Robert Houtchens, William Light