Patents by Inventor William Louis Wentland

William Louis Wentland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190255655
    Abstract: A hybrid manufacturing method may comprise depositing a secondary material onto a workpiece, finishing the secondary material to form a finished surface on the secondary material, depositing a primary material onto the finished surface, subsequent to depositing the secondary material, wherein a surface of the primary material interfaces the finished surface, and the surface of the primary material is complementary to the finished surface, and removing the secondary material.
    Type: Application
    Filed: February 21, 2018
    Publication date: August 22, 2019
    Applicant: Hamilton Sundstrand Corporation
    Inventors: Alexander Madinger, William Louis Wentland, Diana Giulietti
  • Patent number: 10354768
    Abstract: A structure for preventing a scan by a beam is provided. The structure includes a primary material forming the structure. The primary material includes a first mass attenuation coefficient enabling the primary material to be penetrated by the beam. The structure also includes a matrix of dense particles within the primary material. The dense particles include secondary materials different than the primary material. The secondary materials comprise a subsequent mass attenuation coefficient that is greater than the first mass attenuation coefficient of the primary material. The subsequent mass attenuation coefficient enables the dense particles to attenuate the beam to distort the scan.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: July 16, 2019
    Assignee: HAMILTON SUNSTRAND CORPORATION
    Inventors: Eric Karlen, William Louis Wentland
  • Publication number: 20190180896
    Abstract: A particle for use in a powder-based additive manufacturing process includes a magnetic core having a first magnetic permeability, and an aluminum alloy coating surrounding the magnetic core. The aluminum alloy coating has a second magnetic permeability lower than the first magnetic permeability.
    Type: Application
    Filed: December 11, 2017
    Publication date: June 13, 2019
    Inventors: Eric W. Karlen, William Louis Wentland
  • Publication number: 20190157948
    Abstract: A method of manufacturing a rotor of an electric motor or an electric generator includes positioning a plurality of amortisseur bars and using additive manufacturing to place electrically conductive material. More specifically, positioning the amortisseur bars may include circumferentially positioning the bars around a rotor stack and using additive manufacturing to place electrically conductive material may include forming a non-solid pattern of electrically conductive material, such as a pattern of electrically conductive traces, across opposite axial ends of the rotor stack to electrically interconnect an amortisseur circuit.
    Type: Application
    Filed: November 17, 2017
    Publication date: May 23, 2019
    Applicant: HAMILTON SUNDSTRAND CORPORATION
    Inventors: William Louis Wentland, Eric W. Karlen, Dhaval Patel, Andrew R. Wilkinson
  • Publication number: 20190126435
    Abstract: A method of altering an additively manufactured part can include orienting a surface of the additively manufactured part toward a rotational center that may be independent of a rotational axis defined by the additively manufactured part, flowing an abrasive media past the surface, rotating the additively manufacturing part about the rotational center; urging abrasive particles in the abrasive media past the surface abrasive media to impinge the surface with centrifugal force generated by the rotating, and improving surface finish of the surface.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 2, 2019
    Inventors: Eric Karlen, William Louis Wentland, Sergey Mironets
  • Patent number: 10259045
    Abstract: A method for forming a part includes: forming a first portion of the part at a first level; forming a second portion of the part at a second level; wherein forming the first and second portions includes exposing the first and second levels to a sintering process and portions of the first and second levels to an electron beam; causing a magnetorheological (MR) fluid to move into a passage inside the first and second portions; exposing the first and second portions to a magnetic field causing motion of particles in the MR fluid to move and break up sintered material in the passage; and removing some or all of the sintered material in the passage.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: April 16, 2019
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Eric Karlen, Sergey Mironets, Diana Giulietti, Kiley James Versluys, Colette O. Fennessy, William Louis Wentland
  • Publication number: 20190091804
    Abstract: A method of making an article is disclosed. According to the method, an energy beam is directed to a build location on a substrate, and a first powder material is delivered to the build location on the substrate and melted with the energy beam. A second powder material is delivered to the build location on the substrate over the first material and melted with the energy beam. The direction of the energy beam and delivery and melting of the first and second powders is repeated at multiple build locations on the substrate to form a solid surface of the article of the second material. The solid surface comprising the second material is subjected to a finishing process.
    Type: Application
    Filed: September 25, 2017
    Publication date: March 28, 2019
    Inventors: Eric W. Karlen, William Louis Wentland
  • Publication number: 20180370216
    Abstract: An example method of making a component includes providing a digital model of a component to software, the software operable to slice the model into layers and raster each layer into segments, the segments delineated by raster lines. The method further includes depositing a layer of powder onto a platform, compacting the layer of power into a compacted layer, sintering the compacted layer along lines corresponding to the raster lines using a laser, wherein the laser operates at a first power and a first scan speed, the first power being between about 200 and 230 W, then sintering the compacted layer along a perimeter of the compacted layer using the laser to form a unitary layer, wherein the laser operates at a second power and a second scan speed, the second power being between about 100 and 200 W. An apparatus for making a component is also disclosed.
    Type: Application
    Filed: October 17, 2017
    Publication date: December 27, 2018
    Inventors: Sergey Mironets, William Louis Wentland, Diana Giulietti, Colette Opsahl Fennessy
  • Publication number: 20180370215
    Abstract: An example method of making a component includes providing a digital model of a component to a software program, the software program operable to slice the digital model into digital layers and raster each digital layer into digital segments, the digital segments delineated by digital raster lines. The method further includes depositing a first layer of powdered material onto a platform, compacting the first layer of powered material into a first compacted layer, sintering the first compacted layer along lines corresponding to the digital raster lines using a laser, wherein the laser operates at a first power and a first scan speed, and sintering the first compacted layer along a perimeter of the first compacted layer using the laser to form a first unitary layer, wherein the laser operates at a second power and a second scan speed, wherein the ratio of the first power to the second power is less than about 3. An apparatus for making a component is also disclosed.
    Type: Application
    Filed: June 23, 2017
    Publication date: December 27, 2018
    Inventors: Sergey Mironets, William Louis Wentland, Diana Giulietti, Colette Opsahl Fennessy
  • Publication number: 20180339340
    Abstract: A method for making an article is disclosed. The method involves inputting a digital model of an article into an additive manufacturing apparatus comprising an energy source. The additive manufacturing apparatus applies energy from the energy source to successively applied incremental quantities of a powder to fuse the powder to form the article corresponding to the digital model. The powder includes an aluminum alloy having 2.00-10.00 wt. % cerium, 0.50-2.50 wt. % titanium, 0-3.00 wt. % nickel, 0-0.75 wt. % nitrogen, 0-0.05 wt. % other alloying elements, and the balance of aluminum, based on the total weight of the aluminum alloy.
    Type: Application
    Filed: May 26, 2017
    Publication date: November 29, 2018
    Inventors: Eric Karlen, William Louis Wentland, Sergey Mironets, Robert Bianco
  • Publication number: 20180339339
    Abstract: A method for making an article is disclosed. The method involves inputting a digital model of an article into an additive manufacturing apparatus comprising an energy source. The additive manufacturing apparatus applies energy from the energy source to successively applied incremental quantities of a powder to fuse the powder to form the article corresponding to the digital model. The powder includes an aluminum alloy having 2.00-9.00 wt. % cerium, 0.25-3.00 wt. % silicon, 0.25-0.75 wt. % magnesium, 0-0.75 wt. % iron, 0-0.05 wt. % other alloying elements, and the balance of aluminum, based on the total weight of the aluminum alloy.
    Type: Application
    Filed: May 26, 2017
    Publication date: November 29, 2018
    Inventors: Eric Karlen, William Louis Wentland, Sergey Mironets, Robert Bianco
  • Patent number: 10030288
    Abstract: A method for making an article is disclosed. The method involves first generating a digital model of the article. The digital model is inputted into an additive manufacturing apparatus comprising an energy source. The additive manufacturing apparatus applies energy from the energy source to successively applied incremental quantities of a powder to fuse the powder to form the article corresponding to the digital model. The powder includes an aluminum alloy having 90.15-95.80 wt. % aluminum, 3.00-4.50 wt. % silicon, 0.70-1.50 wt. % magnesium, 0.50-1.00 wt. % manganese, 0-0.50 wt. % iron, 0-0.10 wt. % copper, 0-0.50 wt. % titanium, 0-0.20 wt. % boron, 0-1.50 wt. % nickel, and 0-0.05 wt. % other alloying elements, based on the total weight of the aluminum alloy.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: July 24, 2018
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Eric Karlen, William Louis Wentland, Sergey Mironets, Thomas J. Ocken, Robert Bianco
  • Publication number: 20180197645
    Abstract: A structure for preventing a scan by a beam is provided. The structure includes a primary material forming the structure. The primary material includes a first mass attenuation coefficient enabling the primary material to be penetrated by the beam. The structure also includes a matrix of dense particles within the primary material. The dense particles include secondary materials different than the primary material. The secondary materials comprise a subsequent mass attenuation coefficient that is greater than the first mass attenuation coefficient of the primary material. The subsequent mass attenuation coefficient enables the dense particles to attenuate the beam to distort the scan.
    Type: Application
    Filed: January 10, 2017
    Publication date: July 12, 2018
    Inventors: Eric Karlen, William Louis Wentland
  • Publication number: 20180156743
    Abstract: An inspection method include introducing a mixture of expanding foam and a particulate material into a region of interest of an object, fixing the powder within the region of the interest relative to the object, and acquiring image data of the object and particulate mixture using an x-ray source and an x-ray detector. The particulate has a density that is greater than the density of a material forming the object to provide contrast between the region of interest and the object in an image generated using the image data.
    Type: Application
    Filed: January 31, 2018
    Publication date: June 7, 2018
    Inventors: Eric W. Karlen, William Louis Wentland
  • Patent number: 9923434
    Abstract: An end band and method of forming an end band for a rotor. The end band includes a hollow cylindrical band, wherein at least a portion of the band has a grain flow in a direction parallel to the hoop stress of the band. The end band also includes at least a portion having a grain flow in a direction perpendicular to the hoop stress of the band.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: March 20, 2018
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Kavithas Ponnampalam, Jong-Yeong Yung, William Louis Wentland, Craig R. Legros, Kevin L Dickerson, Davis S. Behling
  • Patent number: 9891114
    Abstract: A flexible laminated thermocouple is provided and includes layers of insulation material. At least one of the layers has a longitudinal axis and includes thermocouple conductors formed of differing electrically conductive materials. Each of the thermocouple conductors includes a main section extending along the longitudinal axis and a flange extending transversely to the longitudinal axis. The main sections are insulated from one another and the thermocouple conductors are insulated from thermocouple conductors of another layer.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: February 13, 2018
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Eric Karlen, John Horowy, William Louis Wentland, Debabrata Pal
  • Publication number: 20180021878
    Abstract: A method for making an article is disclosed. According to the method, a digital model of the article is generated. The digital model is inputted into an additive manufacturing apparatus comprising an energy source. The additive manufacturing apparatus applies energy from the energy source to successively applied incremental quantities of a powder to fuse the powder to form the article corresponding to the digital model. The powder particles individually include a composite core including a first phase of a first metal and a second phase of a ceramic. A first shell including a second metal is disposed over the core.
    Type: Application
    Filed: July 22, 2016
    Publication date: January 25, 2018
    Inventors: Eric Karlen, William Louis Wentland
  • Patent number: 9773586
    Abstract: A method for forming a part. The method includes: forming a first portion of the part at a first level; forming a second portion of the part at a second level; wherein forming the first and second portions includes exposing the first and second levels to a sintering process and portions of the first and second levels to an electron beam; forming a wire in the passage formed inside the first and second portions by exposing a portion of the passage to the electron beam; applying a signal to the wire to break up sintered material in the passage; and removing the wire.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: September 26, 2017
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Eric Karlen, William Louis Wentland
  • Publication number: 20170106469
    Abstract: In one aspect, an assembly is provided. The assembly includes a substrate having a top surface and an inner wall, the inner wall defining a cavity, and at least one metal foil layer ultrasonically welded to the substrate top surface using an ultrasonic additive manufacturing process. The at least one metal foil layer extends across the cavity to define a passage, and the at least one metal foil layer is substantially planar and is parallel to the substrate top surface.
    Type: Application
    Filed: December 23, 2016
    Publication date: April 20, 2017
    Inventors: Eric Warren Karlen, William Louis Wentland
  • Publication number: 20170080496
    Abstract: A method for forming a part includes: forming a first portion of the part at a first level; forming a second portion of the part at a second level; wherein forming the first and second portions includes exposing the first and second levels to a sintering process and portions of the first and second levels to an electron beam; causing a magnetorheological (MR) fluid to move into a passage inside the first and second portions; exposing the first and second portions to a magnetic field causing motion of particles in the MR fluid to move and break up sintered material in the passage; and removing some or all of the sintered material in the passage.
    Type: Application
    Filed: September 21, 2015
    Publication date: March 23, 2017
    Inventors: Eric Karlen, Sergey Mironets, Diana Giulietti, Kiley James Versluys, Colette O. Fennessy, William Louis Wentland