Patents by Inventor William M. Bishop

William M. Bishop has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8936320
    Abstract: A relatively warm mineral deposit is solution mined by injecting fluid through a well drilled into the deposit and dissolving the mineral to form a production brine. Warm production brine is cooled at the surface using a heat exchanger as a crystallizer to precipitate the mineral in the exchanger and form a slurry. Crystals of the mineral in the slurry are recovered in a separation plant leaving a relatively cool, dilute or depleted brine, which is conveyed through the heat exchanger for cooling the production brine and then injected into the mineral deposit to dissolve more mineral thereby providing a continuous process. A pipe-in-pipe heat exchanger is preferably used and in a manner so that the heat exchanger also serves as a primary means for conveying the production fluid and/or slurry from the well to the separation plant.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: January 20, 2015
    Assignee: Pinnacle Potash International, Ltd.
    Inventor: William M. Bishop
  • Publication number: 20140326354
    Abstract: A relatively warm mineral deposit is solution mined by injecting fluid through a well drilled into the deposit and dissolving the mineral to form a production brine. Warm production brine is cooled at the surface using a heat exchanger as a crystallizer to precipitate the mineral in the exchanger and form a slurry. Crystals of the mineral in the slurry are recovered in a separation plant leaving a relatively cool, dilute or depleted brine, which is conveyed through the heat exchanger for cooling the production brine and then injected into the mineral deposit to dissolve more mineral thereby providing a continuous process. A pipe-in-pipe heat exchanger is preferably used and in a manner so that the heat exchanger also serves as a primary means for conveying the production fluid and/or slurry from the well to the separation plant.
    Type: Application
    Filed: July 17, 2014
    Publication date: November 6, 2014
    Inventor: William M. Bishop
  • Publication number: 20110080035
    Abstract: A relatively warm mineral deposit is solution mined by injecting fluid through a well drilled into the deposit and dissolving the mineral to form a production brine. Warm production brine is cooled at the surface using a heat exchanger as a crystallizer to precipitate the mineral in the exchanger and form a slurry. Crystals of the mineral in the slurry are recovered in a separation plant leaving a relatively cool, dilute or depleted brine, which is conveyed through the heat exchanger for cooling the production brine and then injected into the mineral deposit to dissolve more mineral thereby providing a continuous process. A pipe-in-pipe heat exchanger is preferably used and in a manner so that the heat exchanger also serves as a primary means for conveying the production fluid and/or slurry from the well to the separation plant.
    Type: Application
    Filed: December 3, 2010
    Publication date: April 7, 2011
    Applicant: PINNACLE POTASH INTERNATIONAL, LTD.
    Inventor: William M. Bishop
  • Patent number: 7857396
    Abstract: A relatively warm mineral deposit is solution mined by injecting fluid through a well drilled into the deposit and dissolving the mineral to form a production brine. Warm production brine is cooled at the surface using a heat exchanger as a crystallizer to precipitate the mineral in the exchanger and form a slurry. Crystals of the mineral in the slurry are recovered in a separation plant leaving a relatively cool, dilute or depleted brine, which is conveyed through the heat exchanger for cooling the production brine and then injected into the mineral deposit to dissolve more mineral thereby providing a continuous process. A pipe-in-pipe heat exchanger is preferably used and in a manner so that the heat exchanger also serves as a primary means for conveying the production fluid and/or slurry from the well to the separation plant.
    Type: Grant
    Filed: December 13, 2008
    Date of Patent: December 28, 2010
    Assignee: Pinnacle Potash International, Ltd.
    Inventor: William M. Bishop
  • Publication number: 20090309408
    Abstract: A relatively warm mineral deposit is solution mined by injecting fluid through a well drilled into the deposit and dissolving the mineral to form a production brine. Warm production brine is cooled at the surface using a heat exchanger as a crystallizer to precipitate the mineral in the exchanger and form a slurry. Crystals of the mineral in the slurry are recovered in a separation plant leaving a relatively cool, dilute or depleted brine, which is conveyed through the heat exchanger for cooling the production brine and then injected into the mineral deposit to dissolve more mineral thereby providing a continuous process. A pipe-in-pipe heat exchanger is preferably used and in a manner so that the heat exchanger also serves as a primary means for conveying the production fluid and/or slurry from the well to the separation plant.
    Type: Application
    Filed: December 13, 2008
    Publication date: December 17, 2009
    Applicant: Pinnacle Potash International, Ltd.
    Inventor: William M. Bishop
  • Publication number: 20090010714
    Abstract: In the past, “compensated” salt caverns have operated with a compensating liquid, such as brine to displace a stored liquid, such as crude oil, when the stored liquid is needed on the surface. Virtually all of the stored liquid in a compensated salt cavern can be expelled from the salt cavern when it is filled with the compensating liquid. In the past, “uncompensated” salt caverns have been used to store gases, such as natural gas. Uncompensated caverns operate without any compensating liquid; instead they rely on pressure. Some of the stored gas (cushion gas) must always be left in an uncompensated salt cavern. This invention breaks with convention and uses a compensating liquid in a salt cavern to store gases which is a technique believed to be previously unknown. “Cushion gas” is not required because the compensating liquid displaces virtually all of the gas in the salt cavern.
    Type: Application
    Filed: September 12, 2008
    Publication date: January 8, 2009
    Applicant: CONVERSION GAS IMPORTS, L.P.
    Inventor: William M. Bishop
  • Patent number: 7451605
    Abstract: In the past, “compensated” salt caverns have operated with a compensating liquid, such as brine to displace a stored liquid, such as crude oil, when the stored liquid is needed on the surface. Virtually all of the stored liquid in a compensated salt cavern can be expelled from the salt cavern when it is filled with the compensating liquid. In the past, “uncompensated” salt caverns have been used to store gases, such as natural gas. Uncompensated caverns operate without any compensating liquid; instead they rely on pressure. Some of the stored gas (cushion gas) must always be left in an uncompensated salt cavern. This invention breaks with convention and uses a compensating liquid in a salt cavern to store gases which is a technique believed to be previously unknown. “Cushion gas” is not required because the compensating liquid displaces virtually all of the gas in the salt cavern.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: November 18, 2008
    Assignee: Conversion Gas Imports, L.P.
    Inventor: William M. Bishop
  • Patent number: 7257952
    Abstract: The methods and apparatus for transporting compressed gas includes a gas storage system having a plurality of pipes connected by a manifold whereby the gas storage system is designed to operate in the range of the optimum compressibility factor for a given composition of gas. The pipe for the gas storage system is preferably large diameter pipe made of a high strength material whereby a low temperature is selected which can be withstood by the material of the pipe. Knowing the compressibility factor of the gas, the temperature, and the diameter of the pipe, the wall thickness of the pipe is calculated for the pressure range of the gas at the selected temperature. The gas storage system may either be modular or be part of the structure of a vehicle for transporting the gas. The gas storage system further includes enclosing the pipes in an enclosure having a nitrogen atmosphere. A displacement fluid may be used to offload the gas from the gas storage system.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: August 21, 2007
    Assignee: EnerSea Transport LLC
    Inventors: William M. Bishop, Charles N. White, David J. Pemberton
  • Patent number: 7036325
    Abstract: The Dual Gas Facility stores natural gas in one or more man-made salt caverns typically located in a single salt dome or in bedded salt. The Dual Gas Facility can access different sources of natural gas. A first gas source is from a natural gas pipeline(s) and a second gas source is from LNG. Depending on economic conditions, supply conditions and other factors, the Dual Gas Facility can receive gas from the natural gas pipeline(s) and/or from LNG to fill the salt caverns. Of course, the LNG must be warmed before being stored in a salt cavern.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: May 2, 2006
    Assignee: Conversion Gas Imports, L.P.
    Inventors: William M. Bishop, Michael M. McCall
  • Patent number: 6994104
    Abstract: The methods and apparatus for transporting compressed gas includes a gas storage system having a plurality of pipes connected by a manifold whereby the gas storage system is designed to operate in the range of the optimum compressibility factor for a given composition of gas. The pipe for the gas storage system is preferably large diameter pipe made of a high strength material whereby a low temperature is selected which can be withstood by the material of the pipe. Knowing the compressibility factor of the gas, the temperature, and the diameter of the pipe, the wall thickness of the pipe is calculated for the pressure range of the gas at the selected temperature. The gas storage system may either be modular or be part of the structure of a vehicle for transporting the gas. The gas storage system further includes enclosing the pipes in an enclosure having a nitrogen atmosphere. A displacement fluid may be used to offload the gas from the gas storage system.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: February 7, 2006
    Assignee: Enersea Transport, LLC
    Inventors: William M. Bishop, Charles N. White, David J. Pemberton
  • Patent number: 6945055
    Abstract: The Dual Gas Facility stores natural gas in one or more man-made salt caverns typically located in a single salt dome or in bedded salt. The Dual Gas Facility can access different sources of natural gas. A first gas source is from a natural gas pipeline(s) and a second gas source is from LNG. Depending on economic conditions, supply conditions and other factors, the Dual Gas Facility can receive gas from the natural gas pipeline(s) and/or from LNG to fill the salt caverns. Of course, the LNG must be warmed before being stored in a salt cavern.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: September 20, 2005
    Assignee: Conversion Gas Imports, L.P.
    Inventors: William M. Bishop, Michael M. McCall
  • Patent number: 6880348
    Abstract: Stranded natural gas is sometimes liquefied and sent to other countries that can use the gas in a transport ship. Conventional receiving terminals use large cryogenic storage tanks to hold the liquefied natural gas (LNG) after it has been offloaded from the ship. The present invention eliminates the need for the conventional cryogenic storage tanks and instead uses uncompensated salt caverns to store the product. The present invention can use a special heat exchanger, referred to as a Bishop Process heat exchanger, to warm the LNG prior to storage in the salt caverns or the invention can use conventional vaporizing systems some of which may be reinforced and strengthened to accommodate higher operating pressures. In one embodiment, the LNG is pumped to higher pressures and converted to dense phase natural gas prior to being transferred into the heat exchanger and the uncompensated salt caverns.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: April 19, 2005
    Assignee: Conversion Gas Imports, L.P.
    Inventors: William M. Bishop, Michael M. McCall
  • Patent number: 6848502
    Abstract: Stranded natural gas is sometimes liquefied and sent to other countries that can use the gas in a transport ship. Conventional receiving terminals use large cryogenic storage tanks to hold the liquefied natural gas (LNG) after it has been offloaded from the ship. The present invention eliminates the need for the conventional cryogenic storage tanks and instead uses uncompensated salt caverns to store the product. The present invention can use a special heat exchanger, referred to as a Bishop Process heat exchanger, to warm the LNG prior to storage in the salt caverns or the invention can use conventional vaporizing systems some of which may be reinforced and strengthened to accommodate higher operating pressures. In one embodiment, the LNG is pumped to higher pressures and converted to dense phase natural gas prior to being transferred into the heat exchanger and the uncompensated salt caverns.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: February 1, 2005
    Assignee: Conversion Gas Imports, L.P.
    Inventors: William M. Bishop, Michael M. McCall
  • Publication number: 20040250553
    Abstract: Stranded natural gas is sometimes liquefied and sent to other countries that can use the gas in a transport ship. Conventional receiving terminals use large cryogenic storage tanks to hold the liquefied natural gas (LNG) after it has been offloaded from the ship. The present invention eliminates the need for the conventional cryogenic storage tanks and instead uses uncompensated salt caverns to store the product. The present invention can use a special heat exchanger, referred to as a Bishop Process heat exchanger, to warm the LNG prior to storage in the salt caverns or the invention can use conventional vaporizing systems some of which may be reinforced and strengthened to accommodate higher operating pressures. In one embodiment, the LNG is pumped to higher pressures and converted to dense phase natural gas prior to being transferred into the heat exchanger and the uncompensated salt caverns.
    Type: Application
    Filed: June 25, 2004
    Publication date: December 16, 2004
    Inventors: William M. Bishop, Michael M. McCall
  • Patent number: 6813893
    Abstract: The Flexible Natural Gas Storage Facility stores natural gas in one or more man-made salt caverns typically located in a single salt dome or in bedded salt. The Flexible Natural Gas Storage Facility can access different sources of natural gas. A first gas source is from a natural gas pipeline(s) and a second gas source is from LNG. Depending on economic conditions, supply conditions and other factors, the Flexible Natural Gas Storage Facility can receive gas from the natural gas pipeline(s) and/or from LNG to fill the salt caverns. Of course, the LNG must be warmed before being stored in a salt cavern.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: November 9, 2004
    Assignee: Conversion Gas Imports, L.L.C.
    Inventors: William M. Bishop, Michael M. McCall
  • Publication number: 20040194476
    Abstract: The Dual Gas Facility stores natural gas in one or more man-made salt caverns typically located in a single salt dome or in bedded salt. The Dual Gas Facility can access different sources of natural gas. A first gas source is from a natural gas pipeline(s) and a second gas source is from LNG. Depending on economic conditions, supply conditions and other factors, the Dual Gas Facility can receive gas from the natural gas pipeline(s) and/or from LNG to fill the salt caverns. Of course, the LNG must be warmed before being stored in a salt cavern.
    Type: Application
    Filed: April 16, 2004
    Publication date: October 7, 2004
    Applicant: CONVERSION GAS IMPORTS, L.P.
    Inventors: William M. Bishop, Michael M. McCall
  • Publication number: 20040112067
    Abstract: Stranded natural gas is sometimes liquefied and sent to other countries that can use the gas in a transport ship. Conventional receiving terminals use large cryogenic storage tanks to hold the liquefied natural gas (LNG) after it has been offloaded from the ship. The present invention eliminates the need for the conventional cryogenic storage tanks and instead uses uncompensated salt caverns to store the product. The present invention can use a special heat exchanger, referred to as a Bishop Process heat exchanger, to warm the LNG prior to storage in the salt caverns or the invention can use conventional vaporizing systems some of which may be reinforced and strengthened to accommodate higher operating pressures. In one embodiment, the LNG is pumped to higher pressures and converted to dense phase natural gas prior to being transferred into the heat exchanger and the uncompensated salt caverns.
    Type: Application
    Filed: August 28, 2003
    Publication date: June 17, 2004
    Applicant: CONVERSION GAS IMPORTS, L.P.
    Inventors: William M. Bishop, Michael M. McCall
  • Patent number: 6739140
    Abstract: Stranded natural gas is sometimes liquefied and sent to other countries that can use the gas in a transport ship. Conventional receiving terminals use large cryogenic storage tanks to hold the liquefied natural gas (LNG) after it has been offloaded from the ship. The present invention eliminates the need for the conventional cryogenic storage tanks and instead uses uncompensated salt caverns to store the product. The present invention can use a special heat exchanger, referred to as a Bishop Process heat exchanger, to warm the LNG prior to storage in the salt caverns or the invention can use conventional vaporizing systems some of which may be reinforced and strengthened to accommodate higher operating pressures. In one embodiment, the LNG is pumped to higher pressures and converted to dense phase natural gas prior to being transferred into the heat exchanger and the uncompensated salt caverns.
    Type: Grant
    Filed: September 18, 2002
    Date of Patent: May 25, 2004
    Assignee: Conversion Gas Imports, L.P.
    Inventors: William M. Bishop, Michael M. McCall
  • Patent number: 6725671
    Abstract: The methods and apparatus for transporting compressed gas includes a gas storage system having a plurality of pipes connected by a manifold whereby the gas storage system is designed to operate in the range of the optimum compressibility factor for a given composition of gas. The pipe for the gas storage system is preferably large diameter pipe made of a high strength material whereby a low temperature is selected which can be withstood by the material of the pipe. Knowing the compressibility factor of the gas, the temperature, and the diameter of the pipe, the wall thickness of the pipe may be calculated for the pressure range of the gas at the selected temperature. The gas storage system may either be modular or be part of the structure of a vessel for transporting the gas to the storage system. Since the pipe provides a bulkhead around the gas, the gas storage system may be used in a single hull vessel. The gas storage system further includes enclosing the pipes in a nitrogen atmosphere.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: April 27, 2004
    Assignee: Enersea Transport, LLC
    Inventor: William M. Bishop
  • Publication number: 20040074241
    Abstract: Stranded natural gas is sometimes liquefied and sent to other countries that can use the gas in a transport ship. Conventional receiving terminals use large cryogenic storage tanks to hold the liquefied natural gas (LNG) after it has been offloaded from the ship. The present invention eliminates the need for the conventional cryogenic storage tanks and instead uses uncompensated salt caverns to store the product. The present invention can use a special heat exchanger, referred to as a Bishop Process heat exchanger, to warm the LNG prior to storage in the salt caverns or the invention can use conventional vaporizing systems some of which may be reinforced and strengthened to accommodate higher operating pressures. In one embodiment, the LNG is pumped to higher pressures and converted to dense phase natural gas prior to being transferred into the heat exchanger and the uncompensated salt caverns.
    Type: Application
    Filed: October 15, 2003
    Publication date: April 22, 2004
    Inventors: William M. Bishop, Michael M. McCall