Patents by Inventor William M. Goldberger

William M. Goldberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5382405
    Abstract: A method of manufacturing a shaped article from a powdered precursor, wherein the components of the powdered precursor are subjected to a self-propagating high-temperature synthesis (SHS) reaction and are consolidated essentially simultaneously. The shaped article requires essentially no machining after manufacture.
    Type: Grant
    Filed: September 3, 1993
    Date of Patent: January 17, 1995
    Assignee: Inland Steel Company
    Inventors: Kenneth F. Lowrance, II, Eric C. Knorr, William M. Goldberger, Daniel Boss, Doreen Edwards
  • Patent number: 5348694
    Abstract: A method of consolidating particulate materials or combinations of such materials into shaped products of very low porosity. High compaction pressures are applied at temperatures in the range of sintering temperature of the materials being consolidated to achieve essentially complete densification at extremely rapid processing rates. Electrothermal heating is utilized to accomplish these results. Difficult materials such as silicon carbide, boron carbide and other very high melting point materials may be densified by these techniques.
    Type: Grant
    Filed: March 17, 1993
    Date of Patent: September 20, 1994
    Assignee: Superior Graphite Co.
    Inventor: William M. Goldberger
  • Patent number: 5294382
    Abstract: The present invention comprises an improved method of controlling resistivity in a process for consolidating particular materials or combinations of such materials into shaped products of very low porosity. High compaction pressures are applied at temperatures in the range of sintering temperature of the materials being consolidated to achieve essentially complete densification at extremely rapid processing rates. Electrothermal heating of a medium having controlled resistivity is utilized to accomplish these results. Various difficult materials, such as silicon carbide, boron carbide and other very high melting point materials, may be densified by these techniques.
    Type: Grant
    Filed: December 14, 1990
    Date of Patent: March 15, 1994
    Assignee: Superior Graphite Co.
    Inventor: William M. Goldberger
  • Patent number: 5246638
    Abstract: The present invention is directed generally to apparatus for and improvements in powdered metal consolidation processes, some of which referred to as "electroconsolidation" processes, and more particularly to processes employing specially shaped rams or electrodes and/or other press elements for imparting uniformity of electrical flux and/or pressure to a workpiece.Some embodiments of the improved process of the present invention contemplate controlling the degree of compaction by providing rams which generally conform to the shape of the preform. Such projections may be provided on the rams to selectively develop at least one zone of relatively high compaction within the die chamber, which results in certain embodiments associated with the electroconsolidation process in release of the major portion of the electrical energy within the zone having a relatively high degree of compaction.
    Type: Grant
    Filed: February 24, 1992
    Date of Patent: September 21, 1993
    Assignee: Superior Graphite Co.
    Inventor: William M. Goldberger
  • Patent number: 4560409
    Abstract: This invention relates to the production of a unique class of granular graphitic carbon materials containing metallic elements dispersed throughout the graphitic structure. More specifically, the unique class of products contain elements that enhance the controlled nucleation of dissolved carbon during the solidification of molten cast irons and are of particular value in the manufacture of quality iron castings. Moreover, the chemical form of the selected metallic elements and their high degree of dissemination within and throughout a graphitic carbon structure has been shown to provide special properties that increase the controlled nucleating or "inoculating" ability of the products of this invention over that obtained by use of the components added individually or in a simple mixture to molten cast iron.
    Type: Grant
    Filed: August 29, 1984
    Date of Patent: December 24, 1985
    Assignee: Superior Graphite
    Inventors: William M. Goldberger, Allan Reed
  • Patent number: 4547430
    Abstract: The present invention is directed to a reaction product of silica sand and of particulate carbonaceous material to form, silicon carbide on the surface of the carbonaceous particles and within the pores thereof, with the silicon carbide ultra-microcrystallites having a diameter of approximately 500 Angstroms and the composition comprising approximately 60% silicon carbide. The present invention is further directed to the process by which the ultra-microcrystallite silicon carbide product is made. In other preferred embodiments the ultra-microcrystallites of silicon carbide may be separated from the carbonaceous material by heat or physical methods to form a substantially pure ultra-microcrystallite silicon carbide product.
    Type: Grant
    Filed: November 10, 1981
    Date of Patent: October 15, 1985
    Assignee: Superior Graphite Company
    Inventors: William M. Goldberger, Allen K. Reed
  • Patent number: 4543240
    Abstract: One aspect of the present invention relates to methods for the continuous production of silicon carbide and other carbide and refractory products by fluidized bed techniques, the apparatus for such continuous production, and the carbide products produced therefrom being further aspects of the present invention.
    Type: Grant
    Filed: January 14, 1985
    Date of Patent: September 24, 1985
    Assignee: Superior Graphite Co.
    Inventor: William M. Goldberger
  • Patent number: 4409073
    Abstract: One aspect of the present invention concerns an improved process for the electrolytic reduction of a metal from a metal compound and comprises the steps of providing a carbon cathode within a container, dissolving the metal compound in a molten salt electrolyte solvent bath which is disposed within the container, the molten electrolyte bath having a higher decomposition potential than the metal compound and having a lesser density than the reduced molten metal, and continuously providing a particulate, free-flowing, high purity, and highly conductive carbon material to the molten bath to serve as the anode, the particulate carbon material having a lesser density than the molten bath, placing an electrical connection in contact with the particulate carbon anode material and applying an electric current thereto, and collecting reduced metal at the cathode.
    Type: Grant
    Filed: June 30, 1980
    Date of Patent: October 11, 1983
    Assignee: Superior Graphite Co.
    Inventor: William M. Goldberger
  • Patent number: 4313573
    Abstract: A two-step method for separating mineral grains from their ores is practised by first applying a shock discharge directly through the ore sample producing shock waves emanating from along the discharge path and reflected shock waves (tension waves) from grain boundaries and other discontinuities in the ore, such tension waves resulting in tensile stresses in the ore greater than the strength of the boundary or discontinuity whereby to gross spall the sample generally along the discharge path and to microfracture the region near the discharge path. The second step comprises comminuting the microfractured ore by impact or non-impact means to further reduce the ore generally along microfractures wherein considerably less energy is expended in the second step than would be required to reduce the ore to the same condition without the first step.
    Type: Grant
    Filed: February 25, 1980
    Date of Patent: February 2, 1982
    Assignee: Battelle Development Corporation
    Inventors: William M. Goldberger, Harold M. Epstein, Bhupendra K. Parekh
  • Patent number: 4293099
    Abstract: The present invention is directed to silicon carbide whisker recovery from a mixture of silicon carbide whiskers and carbonaceous silicon carbide particles. The invention involves shredding the mixture down to a specified particle size, dispersing the mixture in water to form an aqueous mixture, agitating the aqueous mixture, adding surface active reagents to the aqueous mixture, agitating the resulting water-reagent mixture, subjecting the water-reagent mixture to froth flotation having at least three stages, removing tailings therefrom containing water and silicon carbide whiskers and removing float therefrom containing reagents and carbonaceous silicon carbide particles, performing a solid-liquid separation on the tailings and the float, thereby obtaining from the aqueous solution the desired silicon carbide whiskers and obtaining from the reagent solution a carbonaceous silicon carbide particle product.
    Type: Grant
    Filed: July 2, 1979
    Date of Patent: October 6, 1981
    Assignee: Silag, Inc.
    Inventors: Bhupendra K. Parekh, William M. Goldberger
  • Patent number: 4249700
    Abstract: The present invention is directed to silicon carbide whisker recovery from a mixture of silicon carbide whiskers and carbonaceous silicon carbide particles. The invention involves shredding the mixture down to a specified size, dispersing the mixture in water to form an aqueous mixture, agitating the aqueous mixture, mixing the aqueous mixture with an immiscible organic solvent which is lighter than water, agitating the resulting water-organic solvent mixture, allowing the organic solvent and its contents to rise above the water and its contents, separating the two liquid phases into an organic solvent phase and an aqueous phase and, lastly, performing a solid-liquid separation on each of the two phases, thereby obtaining from the aqueous solution the desired silicon carbide whiskers and obtaining from the organic solvent solution a carbonaceous silicon carbide particle product.
    Type: Grant
    Filed: July 2, 1979
    Date of Patent: February 10, 1981
    Assignee: Exxon Research & Engineering Co.
    Inventors: Bhupendra K. Parekh, William M. Goldberger
  • Patent number: 4182498
    Abstract: Metal beads, e.g., magnesium beads, or Mg alloy beads, having a high degree of rotundity, and having a thin coating of sludge or slag ingredients, are recovered from entrapment in a friable contiguous material of sludge or slag material by (a) a primary milling of the friable matrix in a hammer mill or impact mill, (b) screening the material to collect the desired particle sizes, (c) attriting the material in a secondary milling operation to further, and gently, grind sludge material from around the beads, and (d) separating the rotund beads from the pulverized matrix material by using a shape-classifier, such as a slanted shaker table. The material may be treated beforehand by melting the metal-containing sludge or slag, adding a flux or emulsifier material with stirring to cause dispersion of the metal into a relatively narrow particle size range and then freezing the molten mixture. The invention is especially useful in the case of Mg beads, since Mg beads are malleable and pyrophoric.
    Type: Grant
    Filed: August 25, 1978
    Date of Patent: January 8, 1980
    Assignee: The Dow Chemical Company
    Inventors: William M. Goldberger, Bhupendra K. Parekh, Bobby P. Faulkner
  • Patent number: 4012314
    Abstract: Methods of treating an oil derived by liquefaction of coal particles to separate unreacted solid matter therefrom and collect it in water or other aqueous medium, which comprise controlling the specific gravity of the oil to provide an oleaginous fluid having a substantially lower specific gravity than the aqueous medium, as by mixing the oil with a liquid that is miscible therewith and has a lower specific gravity, or by controlling the temperature of the oil, or both; contacting the fluid with the aqueous medium; moving the fluid in such a manner as to provide a substantial acceleration thereto in a direction to drive most of the solid matter away from the fluid and into the aqueous medium as by moving the fluid in a swirling path around an axis while maintaining a portion of the aqueous medium around at least a portion of the periphery of the path; and separating the aqueous medium with the solid matter contained therein from the fluid.
    Type: Grant
    Filed: September 5, 1975
    Date of Patent: March 15, 1977
    Assignee: Battelle Memorial Institute
    Inventors: William M. Goldberger, Bobby P. Faulkner