Patents by Inventor William Macklin

William Macklin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240154098
    Abstract: This invention relates to particulate electroactive materials comprising a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and optional mesopores having a total volume of at least 0.7 cm3/g and up to 2 cm3/g, wherein at least half of the total micropore and mesopore volume is in the form of pores having a diameter of no more than 1.5 nm; and (b) silicon located within the micropores and optional mesopores of the porous carbon framework in a defined amount relative to the total volume of the micropores and optional mesopores.
    Type: Application
    Filed: June 26, 2023
    Publication date: May 9, 2024
    Inventors: Charles Mason, Richard Taylor, James Farrell, William Macklin
  • Publication number: 20240154099
    Abstract: This invention relates to particulate electroactive materials comprising a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and optional mesopores having a combined total volume of at least 0.7 cm3/g, wherein at least half of the micropore/mesopore volume is in the form of pores having a diameter of no more than 1.5 nm; and (b) an electroactive material located within the micropores and/or mesopores of the porous carbon framework. The D90 particle diameter of the composite particles is no more than 10 nm.
    Type: Application
    Filed: June 26, 2023
    Publication date: May 9, 2024
    Inventors: Charles Mason, Richard Taylor, James Farrell, William Macklin
  • Patent number: 11951380
    Abstract: Disclosed is a skateboard grinding device configured to install within a skateboard wheel for facilitating grinding of the skateboard on an object.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: April 9, 2024
    Inventors: Daniel Bradley Macklin, Bradley William Macklin
  • Patent number: 11695110
    Abstract: This invention relates to particulate electroactive materials comprising a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and optional mesopores having a total volume of at least 0.7 cm3/g and up to 2 cm3/g, wherein at least half of the total micropore and mesopore volume is in the form of pores having a diameter of no more than 1.5 nm; and (b) silicon located within the micropores and optional mesopores of the porous carbon framework in a defined amount relative to the total volume of the micropores and optional mesopores.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: July 4, 2023
    Assignee: Nexeon Limited
    Inventors: Charles Mason, Richard Taylor, James Farrell, William Macklin
  • Patent number: 11688849
    Abstract: This invention relates to particulate electroactive materials comprising a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and optional mesopores having a combined total volume of at least 0.7 cm3/g, wherein at least half of the micropore/mesopore volume is in the form of pores having a diameter of no more than 1.5 nm; and (b) an electroactive material located within the micropores and/or mesopores of the porous carbon framework. The D90 particle diameter of the composite particles is no more than 10 nm.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: June 27, 2023
    Assignee: Nexeon Limited
    Inventors: Charles Mason, Richard Taylor, James Farrell, William Macklin
  • Publication number: 20220246910
    Abstract: This invention relates to particulate electroactive materials consisting of a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and mesopores having a total volume of 0.4 to 0.75 cm3/g, wherein the micropore volume fraction is in the range of 0.5 to 0.85 based on the total volume of micropores and mesopores; and 5 (b) silicon located at least within the micropores of the porous carbon framework in a defined amount relative to the volume of the micropores and mesopores.
    Type: Application
    Filed: May 20, 2020
    Publication date: August 4, 2022
    Inventors: Charles Mason, Chris Friend, William Macklin
  • Publication number: 20220059825
    Abstract: This invention relates to particulate electroactive materials comprising a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and optional mesopores having a combined total volume of at least 0.7 cm3/g, wherein at least half of the micropore/mesopore volume is in the form of pores having a diameter of no more than 1.5 nm; and (b) an electroactive material located within the micropores and/or mesopores of the porous carbon framework. The D90 particle diameter of the composite particles is no more than 10 nm.
    Type: Application
    Filed: November 2, 2021
    Publication date: February 24, 2022
    Inventors: Charles Mason, Richard Taylor, James Farrell, William Macklin
  • Publication number: 20210376313
    Abstract: This invention relates to particulate electroactive materials comprising a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and optional mesopores having a total volume of at least 0.7 cm3/g and up to 2 cm3/g, wherein at least half of the total micropore and mesopore volume is in the form of pores having a diameter of no more than 1.5 nm; and (b) silicon located within the micropores and optional mesopores of the porous carbon framework in a defined amount relative to the total volume of the micropores and optional mesopores.
    Type: Application
    Filed: May 11, 2021
    Publication date: December 2, 2021
    Inventors: Charles Mason, Richard Taylor, James Farrell, William Macklin
  • Patent number: 11165054
    Abstract: This invention relates to particulate electroactive materials comprising a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and optional mesopores having a combined total volume of at least 0.7 cm3/g, wherein at least half of the micropore/mesopore volume is in the form of pores having a diameter of no more than 1.5 nm; and (b) an electroactive material located within the micropores and/or mesopores of the porous carbon framework. The D90 particle diameter of the composite particles is no more than 10 nm.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: November 2, 2021
    Assignee: Nexeon Limited
    Inventors: Charles Mason, Richard Taylor, James Farrell, William Macklin
  • Patent number: 11011748
    Abstract: This invention relates to particulate electroactive materials comprising a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and optional mesopores having a total volume of at least 0.7 cm3/g and up to 2 cm3/g, wherein at least half of the total micropore and mesopore volume is in the form of pores having a diameter of no more than 1.5 nm; and (b) silicon located within the micropores and optional mesopores of the porous carbon framework in a defined amount relative to the total volume of the micropores and optional mesopores.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: May 18, 2021
    Assignee: Nexeon Limited
    Inventors: Charles Mason, Richard Taylor, James Farrell, William Macklin
  • Publication number: 20200152974
    Abstract: This invention relates to particulate electroactive materials comprising a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and optional mesopores having a combined total volume of at least 0.7 cm3/g, wherein at least half of the micropore/mesopore volume is in the form of pores having a diameter of no more than 1.5 nm; and (b) an electroactive material located within the micropores and/or mesopores of the porous carbon framework. The D90 particle diameter of the composite particles is no more than 10 nm.
    Type: Application
    Filed: February 12, 2019
    Publication date: May 14, 2020
    Inventors: Charles Mason, Richard Taylor, James Farrell, William Macklin
  • Publication number: 20200152973
    Abstract: This invention relates to particulate electroactive materials comprising a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and optional mesopores having a total volume of at least 0.7 cm3/g and up to 2 cm3/g, wherein at least half of the total micropore and mesopore volume is in the form of pores having a diameter of no more than 1.5 nm; and (b) silicon located within the micropores and optional mesopores of the porous carbon framework in a defined amount relative to the total volume of the micropores and optional mesopores.
    Type: Application
    Filed: February 12, 2019
    Publication date: May 14, 2020
    Inventors: Charles Mason, Richard Taylor, James Farrell, William Macklin
  • Patent number: 10008716
    Abstract: A multilayer electrode suitable for use in a secondary battery is disclosed. The major active component of one layer is different to a major active component of an adjacent layer. The use of layered electrodes improves both the capacity retention and cycle life of batteries including such layered electrodes.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: June 26, 2018
    Assignee: Nexeon Limited
    Inventors: Mamdouh Abdelsalam, Fazil Coowar, William Macklin
  • Publication number: 20150280221
    Abstract: A multilayer electrode suitable for use in a secondary battery is disclosed. The major active component of one layer is different to a major active component of an adjacent layer. The use of layered electrodes improves both the capacity retention and cycle life of batteries including such layered electrodes.
    Type: Application
    Filed: October 31, 2013
    Publication date: October 1, 2015
    Inventors: Mamdouh Abdelsalam, Fazil Coowar, William Macklin