Patents by Inventor William MacNeish

William MacNeish has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11969948
    Abstract: Apparatuses, systems and methods capable of controlling an additive manufacturing print process on an additive manufacturing printer. The disclosed embodiments may include: a plurality of sensors capable of monitoring at least one of an input of print filament to a print head of the printer, and a temperature of a nozzle of the printer, as indicative of a state of the additive manufacturing print process; at least one processor associated with at least one controller and capable of receiving sensor data regarding the monitoring from the plurality of sensors, and comprising non-transitory computing code for applying to the sensor data at least one correct one of the state of the additive manufacturing print process; a comparator embedded in the non-transitory computing code for assessing a lack of compliance of the print process to the correct one of the state; and at least one modifying output of the at least one controller to revise the compliance of the print process to the correct one of the state.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: April 30, 2024
    Inventors: William MacNeish, Erik Gjovik
  • Publication number: 20240059015
    Abstract: Apparatuses, systems and methods of providing heat to enable an FDM additive manufacturing nozzle having refined print control and enhanced printing speed. The heating element may include at least one sheath sized to fittedly engage around an outer circumference of the FDM printer nozzle; at least one wire coil at least partially contacting an inner diameter of the sheath; and at least one energy receiver associated with the at least one wire coil.
    Type: Application
    Filed: October 24, 2023
    Publication date: February 22, 2024
    Inventors: William MacNeish, Erik Gjovik
  • Publication number: 20240042687
    Abstract: Apparatuses, systems and methods of providing heat to enable an FDM additive manufacturing nozzle having refined print control and enhanced printing speed. The heating element may include at least one sheath sized to fittedly engage around an outer circumference of the FDM printer nozzle; at least one wire coil at least partially contacting an inner diameter of the sheath; and at least one energy receiver associated with the at least one wire coil.
    Type: Application
    Filed: September 8, 2023
    Publication date: February 8, 2024
    Inventors: William MacNeish, Erik Gjovik, Luke Rodgers
  • Patent number: 11878468
    Abstract: Apparatuses, systems and methods of providing heat to enable an FDM additive manufacturing nozzle having refined print control and enhanced printing speed. The heating element may include at least one sheath sized to fittedly engage around an outer circumference of the FDM printer nozzle; at least one wire coil at least partially contacting an inner diameter of the sheath; and at least one energy receiver associated with the at least one wire coil.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: January 23, 2024
    Assignee: JABIL INC.
    Inventors: William MacNeish, Erik GJovik
  • Patent number: 11878469
    Abstract: Apparatuses, systems and methods of providing heat to enable an FDM additive manufacturing nozzle having refined print control and enhanced printing speed. The heating element may include at least one sheath sized to fittedly engage around an outer circumference of the FDM printer nozzle; at least one wire coil at least partially contacting an inner diameter of the sheath; and at least one energy receiver associated with the at least one wire coil.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: January 23, 2024
    Assignee: JABIL INC.
    Inventors: William MacNeish, Erik GJovik
  • Patent number: 11872762
    Abstract: Apparatuses, systems and methods of providing heat to enable an FDM additive manufacturing nozzle having refined print control and enhanced printing speed. The heating element may include at least one sheath sized to fittedly engage around an outer circumference of the FDM printer nozzle; at least one wire coil at least partially contacting an inner diameter of the sheath; and at least one energy receiver associated with the at least one wire coil.
    Type: Grant
    Filed: October 12, 2021
    Date of Patent: January 16, 2024
    Assignee: JABIL INC.
    Inventors: William MacNeish, Erik Gjovik
  • Patent number: 11865778
    Abstract: The disclosure is of and includes at least an apparatus, system and method for a print head for additive manufacturing. The apparatus, system and method may include at least two proximate hobs suitable to receive and extrude therebetween a print material filament for the additive manufacturing, each of the two hobs comprising two halves, wherein each of the hob halves comprises teeth that are offset with respect to the teeth of the opposing hob half; a motor capable of imparting a rotation to at least one of the two hobs, wherein the extrusion results from the rotation; and an interface to a hot end capable of outputting the print material filament after at least partial liquification to perform the additive manufacturing.
    Type: Grant
    Filed: February 15, 2021
    Date of Patent: January 9, 2024
    Assignee: JABIL INC.
    Inventors: William MacNeish, Erik Gjovik
  • Patent number: 11845223
    Abstract: Apparatuses, systems and methods of providing heat to enable an FDM additive manufacturing nozzle having refined print control and enhanced printing speed. The heating element may include at least one sheath sized to fittedly engage around an outer circumference of the FDM printer nozzle; at least one wire coil at least partially contacting an inner diameter of the sheath; and at least one energy receiver associated with the at least one wire coil.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: December 19, 2023
    Assignee: Jabil Inc.
    Inventors: William MacNeish, Erik GJovik
  • Patent number: 11840019
    Abstract: Apparatuses, systems and methods of providing heat to enable an FDM additive manufacturing nozzle having refined print control and enhanced printing speed. The heating element may include at least one sheath sized to fittedly engage around an outer circumference of the FDM printer nozzle; at least one wire coil at least partially contacting an inner diameter of the sheath; and at least one energy receiver associated with the at least one wire coil.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: December 12, 2023
    Assignee: JABIL INC.
    Inventors: William MacNeish, Erik Gjovik
  • Publication number: 20230330930
    Abstract: The disclosure is of and includes at least an apparatus, system and method for a print head for additive manufacturing. The apparatus, system and method may include at least two proximate hobs suitable to receive and extrude therebetween a print material filament for the additive manufacturing, each of the two hobs comprising two halves, wherein each of the hob halves comprises teeth that are offset with respect to the teeth of the opposing hob half; a motor capable of imparting a rotation to at least one of the two hobs, wherein the extrusion results from the rotation; and an interface to a hot end capable of outputting the print material filament after at least partial liquification to perform the additive manufacturing.
    Type: Application
    Filed: June 23, 2023
    Publication date: October 19, 2023
    Applicant: JABIL INC.
    Inventors: William MacNeish, Erik Gjovik
  • Patent number: 11685116
    Abstract: The disclosure is of and includes at least an apparatus, system and method for a print head for additive manufacturing. The apparatus, system and method may include at least two proximate hobs suitable to receive and extrude therebetween a print material filament for the additive manufacturing, each of the two hobs comprising two halves, wherein each of the hob halves comprises teeth that are offset with respect to the teeth of the opposing hob half; a motor capable of imparting a rotation to at least one of the two hobs, wherein the extrusion results from the rotation; and an interface to a hot end capable of outputting the print material filament after at least partial liquification to perform the additive manufacturing.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: June 27, 2023
    Assignee: JABIL INC.
    Inventors: William MacNeish, Erik Gjovik
  • Patent number: 11673325
    Abstract: The disclosure is of and includes at least an apparatus, system and method for a print head for additive manufacturing. The apparatus, system and method may include at least two proximate hobs suitable to receive and extrude therebetween a print material filament for the additive manufacturing, each of the two hobs comprising two halves, wherein each of the hob halves comprises teeth that are offset with respect to the teeth of the opposing hob half; a motor capable of imparting a rotation to at least one of the two hobs, wherein the extrusion results from the rotation; and an interface to a hot end capable of outputting the print material filament after at least partial liquification to perform the additive manufacturing.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: June 13, 2023
    Assignee: JABIL INC.
    Inventors: William MacNeish, Erik Gjovik
  • Patent number: 11654630
    Abstract: Apparatuses, systems and methods of providing heat to enable an FDM additive manufacturing nozzle having refined print control and enhanced printing speed. The heating element may include at least one sheath sized to fittedly engage around an outer circumference of the FDM printer nozzle; at least one wire coil at least partially contacting an inner diameter of the sheath; and at least one energy receiver associated with the at least one wire coil.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: May 23, 2023
    Assignee: JABIL INC.
    Inventors: William MacNeish, Erik Gjovik
  • Patent number: 11584078
    Abstract: Apparatuses, systems and methods of providing heat to enable an FDM additive manufacturing nozzle having refined print control and enhanced printing speed. The heating element may include at least one sheath sized to fittedly engage around an outer circumference of the FDM printer nozzle; at least one wire coil at least partially contacting an inner diameter of the sheath; and at least one energy receiver associated with the at least one wire coil.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: February 21, 2023
    Assignee: JABIL INC.
    Inventors: William MacNeish, Erik Gjovik
  • Patent number: 11485088
    Abstract: Apparatuses, systems and methods capable of controlling an additive manufacturing print process on an additive manufacturing printer. The disclosed embodiments may include: a plurality of sensors capable of monitoring at least one of an input of print filament to a print head of the printer, and a temperature of a nozzle of the printer, as indicative of a state of the additive manufacturing print process; at least one processor associated with at least one controller and capable of receiving sensor data regarding the monitoring from the plurality of sensors, and comprising non-transitory computing code for applying to the sensor data at least one correct one of the state of the additive manufacturing print process; a comparator embedded in the non-transitory computing code for assessing a lack of compliance of the print process to the correct one of the state; and at least one modifying output of the at least one controller to revise the compliance of the print process to the correct one of the state.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: November 1, 2022
    Assignee: JABIL INC.
    Inventors: William MacNeish, Erik Gjovik
  • Patent number: 11458683
    Abstract: Apparatuses, systems and methods of providing heat to enable an FDM additive manufacturing nozzle having refined print control and enhanced printing speed. The heating element may include at least one sheath sized to fittedly engage around an outer circumference of the FDM printer nozzle; at least one wire coil at least partially contacting an inner diameter of the sheath; and at least one energy receiver associated with the at least one wire coil.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: October 4, 2022
    Assignee: JABIL INC.
    Inventors: William MacNeish, Erik Gjovik
  • Patent number: 11420385
    Abstract: The disclosure is of and includes at least an apparatus, system and method for a print head for additive manufacturing. The apparatus, system and method may include at least two proximate hobs suitable to receive and extrude therebetween a print material filament for the additive manufacturing, each of the two hobs comprising two halves, wherein each of the hob halves comprises teeth that are offset with respect to the teeth of the opposing hob half; a motor capable of imparting a rotation to at least one of the two hobs, wherein the extrusion results from the rotation; and an interface to a hot end capable of outputting the print material filament after at least partial liquification to perform the additive manufacturing.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: August 23, 2022
    Assignee: JABIL INC.
    Inventors: William MacNeish, Erik Gjovik
  • Publication number: 20220080675
    Abstract: Apparatuses, systems and methods capable of controlling an additive manufacturing print process on an additive manufacturing printer. The disclosed embodiments may include: a plurality of sensors capable of monitoring at least one of an input of print filament to a print head of the printer, and a temperature of a nozzle of the printer, as indicative of a state of the additive manufacturing print process; at least one processor associated with at least one controller and capable of receiving sensor data regarding the monitoring from the plurality of sensors, and comprising non-transitory computing code for applying to the sensor data at least one correct one of the state of the additive manufacturing print process; a comparator embedded in the non-transitory computing code for assessing a lack of compliance of the print process to the correct one of the state; and at least one modifying output of the at least one controller to revise the compliance of the print process to the correct one of the state.
    Type: Application
    Filed: September 22, 2021
    Publication date: March 17, 2022
    Applicant: JABIL INC.
    Inventors: William MacNeish, Erik Gjovik
  • Publication number: 20220072797
    Abstract: Apparatuses, systems and methods capable of controlling an additive manufacturing print process on an additive manufacturing printer. The disclosed embodiments may include: a plurality of sensors capable of monitoring at least one of an input of print filament to a print head of the printer, and a temperature of a nozzle of the printer, as indicative of a state of the additive manufacturing print process; at least one processor associated with at least one controller and capable of receiving sensor data regarding the monitoring from the plurality of sensors, and comprising non-transitory computing code for applying to the sensor data at least one correct one of the state of the additive manufacturing print process; a comparator embedded in the non-transitory computing code for assessing a lack of compliance of the print process to the correct one of the state; and at least one modifying output of the at least one controller to revise the compliance of the print process to the correct one of the state.
    Type: Application
    Filed: August 4, 2021
    Publication date: March 10, 2022
    Applicant: JABIL INC.
    Inventors: William MacNeish, Erik Gjovik
  • Publication number: 20220072796
    Abstract: Apparatuses, systems and methods capable of controlling an additive manufacturing print process on an additive manufacturing printer. The disclosed embodiments may include: a plurality of sensors capable of monitoring at least one of an input of print filament to a print head of the printer, and a temperature of a nozzle of the printer, as indicative of a state of the additive manufacturing print process; at least one processor associated with at least one controller and capable of receiving sensor data regarding the monitoring from the plurality of sensors, and comprising non-transitory computing code for applying to the sensor data at least one correct one of the state of the additive manufacturing print process; a comparator embedded in the non-transitory computing code for assessing a lack of compliance of the print process to the correct one of the state; and at least one modifying output of the at least one controller to revise the compliance of the print process to the correct one of the state.
    Type: Application
    Filed: August 4, 2021
    Publication date: March 10, 2022
    Applicant: JABIL INC.
    Inventors: William MacNeish, Erik Gjovik