Patents by Inventor William McLean, II

William McLean, II has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6351254
    Abstract: A junction-based field emission display, wherein the junctions are formed by depositing a semiconducting or dielectric, low work function, negative electron affinity (NEA) silicon-based compound film (SBCF) onto a metal or n-type semiconductor substrate. The SBCF can be doped to become a p-type semiconductor. A small forward bias voltage is applied across the junction so that electron transport is from the substrate into the SBCF region. Upon entering into this NEA region, many electrons are released into the vacuum level above the SBCF surface and accelerated toward a positively biased phosphor screen anode, hence lighting up the phosphor screen for display. To turn off, simply switch off the applied potential across the SBCF/substrate. May be used for field emission flat panel displays.
    Type: Grant
    Filed: July 6, 1998
    Date of Patent: February 26, 2002
    Assignee: The Regents of the University of California
    Inventors: Long N. Dinh, Mehdi Balooch, William McLean, II, Marcus A. Schildbach
  • Patent number: 6235615
    Abstract: Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500° C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.
    Type: Grant
    Filed: February 15, 2000
    Date of Patent: May 22, 2001
    Assignee: The Regents of the University of California
    Inventors: Long N. Dinh, William McLean, II, Mehdi Balooch, Edward J. Fehring, Jr., Marcus A. Schildbach
  • Patent number: 6162707
    Abstract: Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: December 19, 2000
    Assignee: The Regents of the University of California
    Inventors: Long N. Dinh, William McLean, II, Mehdi Balooch, Edward J. Fehring, Jr., Marcus A. Schildbach
  • Patent number: 6019913
    Abstract: Low work function, stable compound clusters are generated by co-evaporation of a solid semiconductor (i.e., Si) and alkali metal (i.e., Cs) elements in an oxygen environment. The compound clusters are easily patterned during deposition on substrate surfaces using a conventional photo-resist technique. The cluster size distribution is narrow, with a peak range of angstroms to nanometers depending on the oxygen pressure and the Si source temperature. Tests have shown that compound clusters when deposited on a carbon substrate contain the desired low work function property and are stable up to 600.degree. C. Using the patterned cluster containing plate as a cathode baseplate and a faceplate covered with phosphor as an anode, one can apply a positive bias to the faceplate to easily extract electrons and obtain illumination.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: February 1, 2000
    Assignee: The Regents of the University of California
    Inventors: Long N. Dinh, Mehdi Balooch, Marcus A. Schildbach, Alex V. Hamza, William McLean, II
  • Patent number: 5747120
    Abstract: Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10-20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode.
    Type: Grant
    Filed: February 11, 1997
    Date of Patent: May 5, 1998
    Assignee: Regents Of The University Of California
    Inventors: William McLean, II, Mehdi Balooch, Wigbert J. Siekhaus
  • Patent number: 5698173
    Abstract: A method for purifying metallic alloys of uranium for use as nuclear reactor fuels in which the metal alloy is first converted to an oxide and then dissolved in nitric acid. Initial removal of metal oxide impurities not soluble in nitric acid is accomplished by filtration or other physical means. Further purification can be accomplished by carbonate leaching of uranyl ions from the partially purified solution or using traditional methods such as solvent extraction.
    Type: Grant
    Filed: June 21, 1996
    Date of Patent: December 16, 1997
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: William McLean, II, Philip E. Miller
  • Patent number: 5490912
    Abstract: A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz.
    Type: Grant
    Filed: May 31, 1994
    Date of Patent: February 13, 1996
    Assignee: The Regents of the University of California
    Inventors: Bruce E. Warner, William McLean, II
  • Patent number: 5411722
    Abstract: The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gasses into the reaction chamber, the upper port allowing for the exit of gasses from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber.
    Type: Grant
    Filed: October 27, 1993
    Date of Patent: May 2, 1995
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: William McLean, II, Philip E. Miller, James A. Horton