Patents by Inventor William P. Meurer
William P. Meurer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240401170Abstract: A system and method of extracting elements from an aqueous stream are described herein. The method includes designing a process to extract at least two elements from the aqueous product stream. The at least two elements have different commercial values. The process is optimized to minimize a cost of extracting the at least two elements and to maximize a value of extracting the at least two elements. The method further includes extracting the at least two elements according to the process.Type: ApplicationFiled: May 17, 2024Publication date: December 5, 2024Inventors: William P. MEURER, Jay A. BARR, Nathan P. FRANKA, Robert E. GRAHAM, Mohan KALYANARAMAN, Deepak A. MUSALE
-
Publication number: 20240248007Abstract: An autonomous surface vessel includes an elongate body, and a sampling system operatively coupled to the body and including one or more sampling modules, wherein each sampling module includes a housing including a storage container, a sampling material receivable within the storage container, an actuation system operatively coupled to the sampling material via a lead line, and an end cap operatively coupled to the lead line and matable with an open end of the storage container. A computer system is in communication with the sampling system to operate the actuation system, wherein each sampling module is actuatable between a stowed state, where the sampling material is received within the storage container and the end cap sealingly engages the open end, and a deployed state, where the end cap is disengaged from the open end and the sampling material is drawn out of the sampling container.Type: ApplicationFiled: April 22, 2022Publication date: July 25, 2024Applicant: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANYInventors: William P. Meurer, David T. Wang, Gregory W. Shipman, Jeffrey D. Spitzenberger, Michael Sutton, Jeffrey C. Bridges, Paul Moreno
-
Patent number: 11692945Abstract: Detection and sampling of dissolved hydrocarbons of interest in an environment expected to have hydrocarbon molecules, such as a water column or interstitial water in sediment. An apparatus comprising at least one oleophilic film frame is deployed into the environment and the at least one oleophilic film frame is exposed thereto for a defined period of time, and thereafter isolated from the environment to cease exposure thereto. Hydrocarbon molecules scavenged by the oleophilic film may be analyzed to determine their type and/or concentration.Type: GrantFiled: August 13, 2020Date of Patent: July 4, 2023Assignee: ExxonMobil Technology and Engineering CompanyInventors: William P. Meurer, Michael G. Braun
-
Publication number: 20210055231Abstract: Detection and sampling of dissolved hydrocarbons of interest in an environment expected to have hydrocarbon molecules, such as a water column or interstitial water in sediment. An apparatus comprising at least one oleophilic film frame is deployed into the environment and the at least one oleophilic film frame is exposed thereto for a defined period of time, and thereafter isolated from the environment to cease exposure thereto. Hydrocarbon molecules scavenged by the oleophilic film may be analyzed to determine their type and/or concentration.Type: ApplicationFiled: August 13, 2020Publication date: February 25, 2021Inventors: William P. Meurer, Michael G. Braun
-
Patent number: 9638828Abstract: Method and system is described for marine surveying. The method involves operations for exploring and developing hydrocarbons with one or more unmanned vehicles. The unmanned vehicles are used to perform marine surveying and to obtain one or more samples that may be used to identify chemical, hydrocarbon and/or biologic information, which may be used for environmental monitoring of bodies of water.Type: GrantFiled: July 17, 2015Date of Patent: May 2, 2017Assignee: ExxonMobil Upstream Research CompanyInventors: Louise Levien, Amelia C. Robinson, Robert J. Pottorf, William E. Bond, Aaron B. Regberg, A Lucie N'Guessan, Kevin T. Corbett, Scott C. Hornbostel, William P. Meurer
-
Patent number: 9612231Abstract: A method for detecting hydrocarbons is described. The method includes performing a remote sensing survey of a survey location to identify a target location. Then, an underwater vehicle (UV) is deployed into a body of water and directed to the target location. The UV collects measurement data within the body of water at the target location, which is then analyzed to determine whether hydrocarbons are present at the target location.Type: GrantFiled: November 9, 2012Date of Patent: April 4, 2017Assignee: ExxonMobil Upstream Research CompanyInventors: Robert J. Pottorf, Leonard J. Srnka, William Bond, Sebastien L. Dreyfus, Michael Lawson, William P. Meurer, Daniel P. Cherney, Steven R. May, William G. Powell, Christoper J. Vandewater, Mehmet D. Ertas, Sumathy Raman, Aaron B. Regberg, A. Lucie N'Guessan, Amelia C. Robinson, Kurt W. Rudolph
-
Patent number: 9512699Abstract: Systems and methods for regulating an in situ pyrolysis process. The methods may include producing a product fluid stream from an active pyrolysis region of a subterranean formation. The methods further may include detecting a concentration of a first component in the product fluid stream and/or detecting a concentration of a second component in the product fluid stream. The concentration of the first component may be indicative of an intensive property of the pyrolyzed fluid production system. The concentration of the second component may be indicative of an extensive property of the pyrolyzed fluid production system. The methods further may include regulating at least one characteristic of the pyrolyzed fluid production system based upon the concentration of the first component and/or based upon the concentration of the second component. The systems may include systems that are configured to perform the methods.Type: GrantFiled: July 30, 2014Date of Patent: December 6, 2016Assignee: ExxonMobil Upstream Research CompanyInventors: Lloyd M. Wenger, Jr., William P. Meurer, Ana L Braun, Ana Maria Dos Santos Carmo, Michael W. Lin, Zhibin Wei
-
Patent number: 9453828Abstract: Method and system is described for hydrocarbon exploration and development. The method and system include one or more remote devices, such as buoys, which are utilized to identify and collect samples of target materials. The buoys include measurement components, sampling components and storage components to manage the obtained samples.Type: GrantFiled: July 17, 2015Date of Patent: September 27, 2016Assignee: ExxonMobil Upstream Research CompanyInventors: Kevin T. Corbett, William E. Bond, Robert J. Pottorf, Aaron B. Regberg, A. Lucie N'Guessan, Scott C. Hornbostel, William P. Meurer, Louise Levien, Glenn B. Hieshima, Timothy J. Nedwed
-
Patent number: 9394772Abstract: A method for pyrolyzing organic matter in a subterranean formation includes powering a first generation in situ resistive heating element within an aggregate electrically conductive zone at least partially in a first region of the subterranean formation by transmitting an electrical current between a first electrode pair in electrical contact with the first generation in situ resistive heating element to pyrolyze a second region of the subterranean formation, adjacent the first region, to expand the aggregate electrically conductive zone into the second region, wherein the expanding creates a second generation in situ resistive heating element within the second region and powering the second generation in situ resistive heating element by transmitting an electrical current between a second electrode pair in electrical contact with the second generation in situ resistive heating element to generate heat with the second generation in situ resistive heating element within the second region.Type: GrantFiled: September 17, 2014Date of Patent: July 19, 2016Assignee: ExxonMobil Upstream Research CompanyInventors: William P. Meurer, Chen Fang, Federico G. Gallo, Nazish Hoda, Michael W. Lin
-
Publication number: 20160018377Abstract: Method and system is described for hydrocarbon exploration and development. The method and system include one or more remote devices, such as buoys, which are utilized to identify and collect samples of target materials. The buoys include measurement components, sampling components and storage components to manage the obtained samples.Type: ApplicationFiled: July 17, 2015Publication date: January 21, 2016Inventors: Kevin T. Corbett, William E. Bond, Robert J. Pottorf, Aaron B. Regberg, A. Lucie N'Guessan, Scott C. Hornbostel, William P. Meurer, Louise Levien, Glenn B. Hieshima, Timothy J. Nedwed
-
Publication number: 20160018559Abstract: Method and system is described for marine surveying. The method involves operations for exploring and developing hydrocarbons with one or more unmanned vehicles. The unmanned vehicles are used to perform marine surveying and to obtain one or more samples that may be used to identify chemical, hydrocarbon and/or biologic information, which may be used for environmental monitoring of bodies of water.Type: ApplicationFiled: July 17, 2015Publication date: January 21, 2016Inventors: Louise Levien, Amelia C. Robinson, Robert J. Pottorf, William E. Bond, Aaron B. Regberg, A. Lucie N'Guessan, Kevin T. Corbett, Scott C. Hornbostel, William P. Meurer
-
Patent number: 9146225Abstract: A method for detecting hydrocarbons with an underwater vehicle equipped with one or more measurement components is described. The method includes navigating the UV within the body of water; monitoring the body of water with measurement components associated with the UV to collect measurement data. The collected data from the UV is used to determine whether hydrocarbons are present and at the location.Type: GrantFiled: November 9, 2012Date of Patent: September 29, 2015Assignee: ExxonMobil Upstream Research CompanyInventors: Robert J. Pottorf, Leonard J. Srnka, William Bond, Sebastien L. Dreyfus, Michael Lawson, William P. Meurer, Daniel P. Cherney, Steven R. May, William G. Powell, Christopher J. Vandewater, Mehmet D. Ertas, Kurt W. Rudolph, Sumathy Raman, Aaron B. Regberg, A. Lucie N'Guessan, Amelia C. Robinson
-
Patent number: 9080441Abstract: A method for heating a subsurface formation using electrical resistance heating is provided. The method includes placing a first electrically conductive proppant into a fracture within an interval of organic-rich rock. The first electrically conductive proppant has a first bulk resistivity. The method further includes placing a second electrically conductive proppant into the fracture. The second electrically conductive proppant has a second bulk resistivity that is lower than the first bulk resistivity, and is in electrical communication with the first proppant at three or more terminal locations. The method then includes passing an electric current through the second electrically conductive proppant at a selected terminal and through the first electrically conductive proppant, such that heat is generated within the fracture by electrical resistivity. The operator may monitor resistance and switch terminals for the most efficient heating.Type: GrantFiled: October 26, 2012Date of Patent: July 14, 2015Assignee: ExxonMobil Upstream Research CompanyInventors: William P. Meurer, Matthew T. Shanley, Abdel Wadood M. El-Rabaa
-
Publication number: 20150175875Abstract: Systems and methods for improved subterranean granular resistive heaters. The methods may include forming a composite granular resistive heating material. These methods may include determining an expected operating range for an environmental parameter for the composite granular resistive heating material within a subterranean formation, selecting a first material, selecting a second material, and/or generating the composite granular resistive heating material from the first material and the second material. The methods may include forming a granular resistive heater. The methods may include determining the expected operating range and/or locating the composite granular resistive heating material within the subterranean formation.Type: ApplicationFiled: October 20, 2014Publication date: June 25, 2015Inventors: Federico G. Gallo, Chen Fang, Nazish Hoda, Michael W. Lin, William P. Meurer
-
Publication number: 20150122491Abstract: A method for pyrolyzing organic matter in a subterranean formation includes powering a first generation in situ resistive heating element within an aggregate electrically conductive zone at least partially in a first region of the subterranean formation by transmitting an electrical current between a first electrode pair in electrical contact with the first generation in situ resistive heating element to pyrolyze a second region of the subterranean formation, adjacent the first region, to expand the aggregate electrically conductive zone into the second region, wherein the expanding creates a second generation in situ resistive heating element within the second region and powering the second generation in situ resistive heating element by transmitting an electrical current between a second electrode pair in electrical contact with the second generation in situ resistive heating element to generate heat with the second generation in situ resistive heating element within the second region.Type: ApplicationFiled: September 17, 2014Publication date: May 7, 2015Inventors: William P. Meurer, Chen Fang, Federico G. Gallo, Nazish Hoda, Michael W. Lin
-
Publication number: 20150122492Abstract: Systems and methods for controlling in situ resistive heating elements may be utilized to enhance hydrocarbon production within a subterranean formation. An in situ resistive heating element may be controlled by heating a controlled region associated with the in situ resistive heating element, injecting a control gas into the controlled region, and adjusting the electrical conductivity of the controlled region with the control gas. The controlled region may be located such that the heating and injecting may change the shape of the in situ resistive heating element and/or guide the in situ resistive heating element towards subterranean regions of potentially higher productivity and/or of higher organic matter.Type: ApplicationFiled: October 7, 2014Publication date: May 7, 2015Inventors: Michael W. Lin, Chen Fang, Nazish Hoda, William P. Meurer, Shaquiiria S. Howell
-
Publication number: 20150107828Abstract: Systems and methods for regulating an in situ pyrolysis process. The methods may include producing a product fluid stream from an active pyrolysis region of a subterranean formation. The methods further may include detecting a concentration of a first component in the product fluid stream and/or detecting a concentration of a second component in the product fluid stream. The concentration of the first component may be indicative of an intensive property of the pyrolyzed fluid production system. The concentration of the second component may be indicative of an extensive property of the pyrolyzed fluid production system. The methods further may include regulating at least one characteristic of the pyrolyzed fluid production system based upon the concentration of the first component and/or based upon the concentration of the second component. The systems may include systems that are configured to perform the methods.Type: ApplicationFiled: July 30, 2014Publication date: April 23, 2015Inventors: Lloyd M. Wenger, Jr., William P. Meurer, Ana L. Braun, Ana Maria Dos Santos Carmo, Michael W. Lin, Zhibin Wei
-
Publication number: 20150000898Abstract: Systems and methods for decreasing compaction within a pyrolyzed zone are disclosed herein. The methods include injecting a sealing fluid into the pyrolyzed zone and flowing the sealing fluid to a peripheral region of the pyrolyzed zone. The methods further include fluidly sealing the peripheral region of the pyrolyzed zone with a sealing fluid where fluidly sealing limits a fluid leakage from the pyrolyzed zone. Subsequent to the fluidly sealing, the methods further include pressurizing the pyrolyzed zone to a zone pressure. The systems include hydrocarbon production systems and/or components thereof that are formed using the methods.Type: ApplicationFiled: April 22, 2014Publication date: January 1, 2015Inventors: Nazish Hoda, Michael W. Lin, William P. Meurer, Robert D. Kaminsky
-
Publication number: 20140284465Abstract: A method for detecting hydrocarbons with an underwater vehicle equipped with one or more measurement components is described. The method includes navigating the UV within the body of water; monitoring the body of water with measurement components associated with the UV to collect measurement data. The collected data from the UV is used to determine whether hydrocarbons are present and at the location.Type: ApplicationFiled: November 9, 2012Publication date: September 25, 2014Inventors: Robert J. Pottorf, Leonard J. Srnka, William Bond, Sebastien L. Dreyfus, Michael Lawson, William P. Meurer, Daniel P. Cherney, Steven R. May, William G. Powell, Christopher J. Vandewater, Mehmet D. Ertas, Kurt W. Rudolph, Sumathy Raman, Aaron B. Regberg, A. Lucie N'Guessan, Amelia C. Robinson
-
Publication number: 20140256055Abstract: A method for detecting hydrocarbons is described. The method includes performing a remote sensing survey of a survey location to identify a target location. Then, an underwater vehicle (UV) is deployed into a body of water and directed to the target location. The UV collects measurement data within the body of water at the target location, which is then analyzed to determine whether hydrocarbons are present at the target location.Type: ApplicationFiled: November 9, 2012Publication date: September 11, 2014Inventors: Robert J. Pottorf, Leonard J. Srnka, William Bond, Sebastien L. Dreyfus, Michael Lawson, William P. Meurer, Daniel P. Cherney, Steven R. May, William G. Powell, Christoper J. Vandewater, Mehmet D. Ertas, Sumathy Raman, Aaron B. Regberg, A. Lucie N'Guessan, Amelia C. Robinson, Kurt W. Rudolph