Patents by Inventor William Patrick Coffey

William Patrick Coffey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230135843
    Abstract: Lateral flow analyte test systems having a defined geometry that positions a light source at a position relative to a test strip so that a captured image of the test strip is not convoluted with specular reflection, and that permits the light source to illuminate the desired portion of the test strip without the creation of a shadow in the image by the optics of the test strip reader.
    Type: Application
    Filed: November 3, 2022
    Publication date: May 4, 2023
    Applicant: DIAGNOSTIC CONSULTING NETWORK, LLC
    Inventors: Brian Taylor DAUGHERTY, William Patrick COFFEY
  • Publication number: 20230003722
    Abstract: It is an object of the present invention to provide improved lateral flow test devices that can provide sensitive and accurate quantitative test results, and methods for the manufacture thereof.
    Type: Application
    Filed: November 19, 2020
    Publication date: January 5, 2023
    Applicant: IVD VISION, LLC
    Inventors: William Patrick COFFEY, Gregory RENEFF, Ezra John SPENCER
  • Publication number: 20190064158
    Abstract: A combination of capillary forces and gas pressure is used to control the movement of liquid samples within a microfluidic device. A liquid sample introduced to a proximal portion of a capillary channel of a microfluidic device moves by capillary action partway along the capillary channel. As the liquid sample moves, a pressure of a gas acting upon a distal gas-liquid interface of the liquid sample increases by an amount sufficient to stop further movement of the liquid sample. To initiate further movement of the liquid sample, a pump connected to a distal portion of the capillary channel decreases the pressure of the gas acting upon the distal gas-liquid interface of the liquid sample by an amount sufficient to permit the liquid sample to move by capillary action further along the capillary channel of the microfluidic device.
    Type: Application
    Filed: October 24, 2018
    Publication date: February 28, 2019
    Inventors: William Patrick COFFEY, Paul Michael CRIVELLI, Austin Matthew DERFUS, Tuan Hoang DO, Remus Anders Brix HAUPT, Emily PARKER, Gregory RENEFF, Armando Raul TOVAR
  • Patent number: 10145842
    Abstract: A combination of capillary forces and gas pressure is used to control the movement of liquid samples within a microfluidic device. A liquid sample introduced to a proximal portion of a capillary channel of a microfluidic device moves by capillary action partway along the capillary channel. As the liquid sample moves, a pressure of a gas acting upon a distal gas-liquid interface of the liquid sample increases by an amount sufficient to stop further movement of the liquid sample. To initiate further movement of the liquid sample, a pump connected to a distal portion of the capillary channel decreases the pressure of the gas acting upon the distal gas-liquid interface of the liquid sample by an amount sufficient to permit the liquid sample to move by capillary action further along the capillary channel of the microfluidic device.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: December 4, 2018
    Assignee: Quidel Cardiovascular Inc.
    Inventors: William Patrick Coffey, Paul Michael Crivelli, Austin Matthew Derfus, Tuan Hoang Do, Remus Anders Brix Haupt, Emily Parker, Gregory Reneff, Armando Raul Tovar
  • Publication number: 20150087079
    Abstract: A combination of capillary forces and gas pressure is used to control the movement of liquid samples within a microfluidic device. A liquid sample introduced to a proximal portion of a capillary channel of a microfluidic device moves by capillary action partway along the capillary channel. As the liquid sample moves, a pressure of a gas acting upon a distal gas-liquid interface of the liquid sample increases by an amount sufficient to stop further movement of the liquid sample. To initiate further movement of the liquid sample, a pump connected to a distal portion of the capillary channel decreases the pressure of the gas acting upon the distal gas-liquid interface of the liquid sample by an amount sufficient to permit the liquid sample to move by capillary action further along the capillary channel of the microfluidic device.
    Type: Application
    Filed: April 5, 2013
    Publication date: March 26, 2015
    Inventors: William Patrick Coffey, Paul Michael Crivelli, Austin Matthew Derfus, Tuan Hoang Do, Remus Anders Brix Haupt, Emily Parker, Gregory Reneff, Armando Raul Tovar
  • Patent number: 7267799
    Abstract: The present disclosure is directed, in general, to an optical reading system, a universal testing cartridge, and a method of coupling optical reading systems. In a particular illustrative embodiment, the optical reading system includes a universal test cartridge receptor, test format determination logic, test criteria determination logic, and an optical reader module. The universal test cartridge receptor is responsive to a universal test cartridge having a test strip inserted therein. The test format determination logic determines an optical test format of the test strip. The test criteria determination logic determines an optical test criteria based upon the optical test format. The optical reader module is configured to capture an optical test image of the test strip.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: September 11, 2007
    Assignee: Detekt Biomedical, L.L.C.
    Inventors: Damon Vincent Borich, William Patrick Coffey