Patents by Inventor William Patrick Sargent
William Patrick Sargent has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11459098Abstract: A variable speed transmission is disclosed, with a transmission apparatus which includes a planetary gear set having a ring gear and a sun gear. The variable speed transmission further includes a primary engine for powering the sun gear, a braking device engaging the ring gear, and a controller configured to alter the rotational speed of the ring gear by adjusting the braking device.Type: GrantFiled: November 27, 2019Date of Patent: October 4, 2022Assignee: The Boeing CompanyInventors: Gregory Forrest Heath, Stephen C. Slaughter, Robert J. Atmur, William Patrick Sargent, Tse-hua Shen, Bryant Scott Owen, Alice A. Murphy
-
Publication number: 20210155341Abstract: A variable speed transmission is disclosed, with a transmission apparatus which includes a planetary gear set having a ring gear and a sun gear. The variable speed transmission further includes a primary engine for powering the sun gear, a braking device engaging the ring gear, and a controller configured to alter the rotational speed of the ring gear by adjusting the braking device.Type: ApplicationFiled: November 27, 2019Publication date: May 27, 2021Applicant: The Boeing CompanyInventors: Gregory Forrest Heath, Stephen C. Slaughter, Robert J. Atmur, William Patrick Sargent, Tse-hua Shen, Bryant Scott Owen, Alice A. Murphy
-
Patent number: 10975947Abstract: An optimized harmonic drive (“OHD”) includes a wave generator, a flex spline, and a circular rigid spline. The wave generator includes a wave generator contour that minimizes a velocity profile of the wave generator during a high load condition. The flex spline is attached to the wave generator and the circular rigid spline is mechanically engaged to the flex spline. The flex spline includes a plurality of flex spline teeth and the circular rigid spline includes a plurality of rigid spline teeth. The plurality of rigid spline teeth is greater than the plurality of flex spline teeth and the high load condition exists when the rigid spline teeth of the plurality of rigid spline teeth are fully engaged with flex spline teeth of the plurality of flex spline teeth.Type: GrantFiled: February 27, 2018Date of Patent: April 13, 2021Assignee: THE BOEING COMPANYInventors: Robert J. Atmur, William Patrick Sargent
-
Patent number: 10612626Abstract: A self-aligning wobble plate drive, including a stator gear, a wobble plate, and an output plate. The stator gear has a central stator axis and a plurality of stator teeth. The wobble plate has a wobble axis, a plurality of face teeth, and a plurality of wobble teeth, and is disposed such that the wobble axis is at a non-zero wobble angle relative to the stator axis. The output plate includes a plurality of output teeth and is substantially aligned with the stator axis. At least two of the pluralities of teeth are configured to engage with each other in a self-aligning manner such that as the wobble plate nutates around the stator gear, the wobble angle remains constant.Type: GrantFiled: April 22, 2019Date of Patent: April 7, 2020Assignee: The Boeing CompanyInventors: Robert J. Atmur, William Patrick Sargent
-
Patent number: 10520063Abstract: A mechanical virtual elliptical drive, including an input motor, a wobble plate, a stator gear, and an output plate. The input motor may have a rotation axis, a substantially flat surface, and a rounded protrusion extending from the flat surface. The wobble plate may have a wobble axis disposed at a non-zero angle relative to the rotation axis. The rounded protrusion of the motor may engage a substantially flat face of the wobble plate, thereby causing the wobble plate to nutate around the stator gear.Type: GrantFiled: April 21, 2017Date of Patent: December 31, 2019Assignee: The Boeing CompanyInventors: Robert J. Atmur, William Patrick Sargent
-
Publication number: 20190264791Abstract: An optimized harmonic drive (“OHD”) is disclosed. The OHD includes a wave generator, a flex spline, and a circular rigid spline. The wave generator includes a wave generator contour that minimizes a velocity profile of the wave generator during a high load condition. The flex spline is attached to the wave generator and the circular rigid spline is mechanically engaged to the flex spline. The flex spline includes a plurality of flex spline teeth and the circular rigid spline includes a plurality of rigid spline teeth. The plurality of rigid spline teeth is greater than the plurality of flex spline teeth and the high load condition exists when the rigid spline teeth of the plurality of rigid spline teeth are fully engaged with flex spline teeth of the plurality of flex spline teeth.Type: ApplicationFiled: February 27, 2018Publication date: August 29, 2019Inventors: Robert J. Atmur, William Patrick Sargent
-
Patent number: 10392094Abstract: Example transmissions for rotating coaxial drive shafts in opposite directions are described herein. An example apparatus includes a first face gear coupled to a first drive shaft, a first elliptically interfacing gear coupled to a second drive shaft and facing toward the first face gear, the second drive shaft disposed within and coaxially aligned with the first drive shaft, and a wobble plate disposed between the first face gear and the first elliptically interfacing gear. The wobble plate has a second face gear on a first side of the wobble plate engaged with the first face gear and a second elliptically interfacing gear on a second side of the wobble plate engaged with the first elliptically interfacing gear. The wobble plate is to rotate the first face gear and the first elliptically interfacing gear in opposite directions.Type: GrantFiled: June 6, 2017Date of Patent: August 27, 2019Assignee: The Boeing CompanyInventors: Robert J. Atmur, William Patrick Sargent
-
Publication number: 20190249753Abstract: A self-aligning wobble plate drive, including a stator gear, a wobble plate, and an output plate. The stator gear has a central stator axis and a plurality of stator teeth. The wobble plate has a wobble axis, a plurality of face teeth, and a plurality of wobble teeth, and is disposed such that the wobble axis is at a non-zero wobble angle relative to the stator axis. The output plate includes a plurality of output teeth and is substantially aligned with the stator axis. At least two of the pluralities of teeth are configured to engage with each other in a self-aligning manner such that as the wobble plate nutates around the stator gear, the wobble angle remains constant.Type: ApplicationFiled: April 22, 2019Publication date: August 15, 2019Applicant: The Boeing CompanyInventors: Robert J. Atmur, William Patrick Sargent
-
Patent number: 10267383Abstract: A self-aligning wobble plate drive, including a stator gear, a wobble plate, and an output plate. The stator gear has a central stator axis and a plurality of stator teeth. The wobble plate has a wobble axis, a plurality of face teeth, and a plurality of wobble teeth, and is disposed such that the wobble axis is at a non-zero wobble angle relative to the stator axis. The output plate includes a plurality of output teeth and is substantially aligned with the stator axis. At least two of the pluralities of teeth are configured to engage with each other in a self-aligning manner such that as the wobble plate nutates around the stator gear, the wobble angle remains constant.Type: GrantFiled: May 3, 2017Date of Patent: April 23, 2019Assignee: The Boeing CompanyInventors: Robert J. Atmur, William Patrick Sargent
-
Patent number: 10215244Abstract: An elliptically interfacing gear assisted braking system may include an input shaft with a coupled input gear, a wobble plate, a rotor with a reaction gear, and an actuated brake mechanism, or brake. The input shaft may define an axis of rotation and the wobble plate may have a wobble axis disposed at a non-zero angle relative to the rotation axis. A set of face teeth disposed on one surface of the wobble plate may partially mesh with the input gear, and a set of wobble teeth on an opposite surface of the wobble plate may partially mesh with the reaction gear. Rotation of the input shaft may thereby cause rotation of the wobble plate and rotor. The brake may mate with the rotor and when actuated, slow the rotor with respect to the input shaft. Rolling contact forces between the surfaces of the wobble teeth and reaction teeth may then induce nutation in the wobble plate, thereby dissipating rotational energy.Type: GrantFiled: March 2, 2017Date of Patent: February 26, 2019Assignee: The Boeing CompanyInventors: Robert J. Atmur, William Patrick Sargent
-
Patent number: 10203022Abstract: A wobble plate drive system may include a stator having a central axis and a plurality of stator teeth disposed on an inner cylindrical surface. The system may further include a wobble plate having a wobble axis disposed at a non-zero angle relative to the central axis, an outer cylindrical surface, and an upper annular surface. A plurality of wobble teeth may be disposed on the outer cylindrical surface and a plurality of face teeth may be disposed on the upper annular surface. The system may further include an output gear having an output axis substantially aligned with the central axis and a lower annular surface. A plurality of output teeth may be disposed on the lower annular surface. The wobble plate may be configured to rotate, the plurality of wobble teeth may be configured to engage with the plurality of stator teeth, and the plurality of face teeth may be configured to engage with the plurality of output teeth as the wobble plate nutates around the stator.Type: GrantFiled: November 4, 2015Date of Patent: February 12, 2019Assignee: The Boeing CompanyInventors: Robert J. Atmur, William Patrick Sargent
-
Patent number: 10164501Abstract: A method and apparatus for operating a reluctance motor. The apparatus comprises a stator and a rotor device. The stator comprises a first stator component and a second stator component. The first stator component has at least three poles. The second stator component has at least three corresponding poles. The at least three poles and the at least three corresponding poles form pole pairs. The rotor device is positioned between the first stator component and the second stator component. The rotor device has two rotor poles.Type: GrantFiled: December 11, 2014Date of Patent: December 25, 2018Assignee: The Boeing CompanyInventors: Robert J. Atmur, William Patrick Sargent
-
Publication number: 20180346086Abstract: Example transmissions for rotating coaxial drive shafts in opposite directions are described herein. An example apparatus includes a first face gear coupled to a first drive shaft, a first elliptically interfacing gear coupled to a second drive shaft and facing toward the first face gear, the second drive shaft disposed within and coaxially aligned with the first drive shaft, and a wobble plate disposed between the first face gear and the first elliptically interfacing gear. The wobble plate has a second face gear on a first side of the wobble plate engaged with the first face gear and a second elliptically interfacing gear on a second side of the wobble plate engaged with the first elliptically interfacing gear. The wobble plate is to rotate the first face gear and the first elliptically interfacing gear in opposite directions.Type: ApplicationFiled: June 6, 2017Publication date: December 6, 2018Inventors: Robert J. Atmur, William Patrick Sargent
-
Publication number: 20180320760Abstract: A self-aligning wobble plate drive, including a stator gear, a wobble plate, and an output plate. The stator gear has a central stator axis and a plurality of stator teeth. The wobble plate has a wobble axis, a plurality of face teeth, and a plurality of wobble teeth, and is disposed such that the wobble axis is at a non-zero wobble angle relative to the stator axis. The output plate includes a plurality of output teeth and is substantially aligned with the stator axis. At least two of the pluralities of teeth are configured to engage with each other in a self-aligning manner such that as the wobble plate nutates around the stator gear, the wobble angle remains constant.Type: ApplicationFiled: May 3, 2017Publication date: November 8, 2018Applicant: The Boeing CompanyInventors: Robert J. Atmur, William Patrick Sargent
-
Publication number: 20180306278Abstract: A mechanical virtual elliptical drive, including an input motor, a wobble plate, a stator gear, and an output plate. The input motor may have a rotation axis, a substantially flat surface, and a rounded protrusion extending from the flat surface. The wobble plate may have a wobble axis disposed at a non-zero angle relative to the rotation axis. The rounded protrusion of the motor may engage a substantially flat face of the wobble plate, thereby causing the wobble plate to nutate around the stator gear.Type: ApplicationFiled: April 21, 2017Publication date: October 25, 2018Applicant: The Boeing CompanyInventors: Robert J. Atmur, William Patrick Sargent
-
Publication number: 20180252279Abstract: An elliptically interfacing gear assisted braking system may include an input shaft with a coupled input gear, a wobble plate, a rotor with a reaction gear, and an actuated brake mechanism, or brake. The input shaft may define an axis of rotation and the wobble plate may have a wobble axis disposed at a non-zero angle relative to the rotation axis. A set of face teeth disposed on one surface of the wobble plate may partially mesh with the input gear, and a set of wobble teeth on an opposite surface of the wobble plate may partially mesh with the reaction gear. Rotation of the input shaft may thereby cause rotation of the wobble plate and rotor. The brake may mate with the rotor and when actuated, slow the rotor with respect to the input shaft. Rolling contact forces between the surfaces of the wobble teeth and reaction teeth may then induce nutation in the wobble plate, thereby dissipating rotational energy.Type: ApplicationFiled: March 2, 2017Publication date: September 6, 2018Applicant: The Boeing CompanyInventors: Robert J. Atmur, William Patrick Sargent
-
Patent number: 10024391Abstract: An elliptically interfacing gearbox system may include an input plate having a rotation axis and a plurality of input teeth. The gearbox system may include a wobble plate having a wobble axis disposed at a non-zero angle relative to the rotation axis, a rear face, and a plurality of face teeth disposed on the rear face. The wobble plate may further include a first plurality of wobble teeth disposed in a first plane perpendicular to the wobble axis and a second plurality of wobble teeth disposed in a second plane perpendicular to the wobble axis. The second plane may be spaced from the first plane along the wobble axis. The gearbox system may include a stator gear having a plurality of stator teeth and an output plate having an output axis substantially aligned with the rotation axis and a plurality of output teeth.Type: GrantFiled: January 6, 2016Date of Patent: July 17, 2018Assignee: The Boeing CompanyInventors: Robert J. Atmur, William Patrick Sargent
-
Patent number: 9768664Abstract: A wobble plate drive system may include a stator having a central axis, an upper surface perpendicular to the central axis, and a plurality of stator teeth disposed on the upper surface. The system may further include a wobble plate having a wobble axis disposed at a non-zero angle relative to the central axis, a lower wobble surface perpendicular to the wobble axis, and an upper wobble surface perpendicular to the wobble axis. A plurality of lower wobble teeth may be disposed on the lower wobble surface and a plurality of upper wobble teeth may be disposed on the upper wobble surface. The system may include an output gear having an output axis substantially aligned with the central axis and a lower surface perpendicular to the output axis. A plurality of output teeth may be disposed on the lower surface. The wobble plate may be configured to rotate as it nutates around the stator.Type: GrantFiled: May 21, 2015Date of Patent: September 19, 2017Assignee: The Boeing CompanyInventors: Robert J. Atmur, William Patrick Sargent
-
Publication number: 20170191549Abstract: An elliptically interfacing gearbox system may include an input plate having a rotation axis and a plurality of input teeth. The gearbox system may include a wobble plate having a wobble axis disposed at a non-zero angle relative to the rotation axis, a rear face, and a plurality of face teeth disposed on the rear face. The wobble plate may further include a first plurality of wobble teeth disposed in a first plane perpendicular to the wobble axis and a second plurality of wobble teeth disposed in a second plane perpendicular to the wobble axis. The second plane may be spaced from the first plane along the wobble axis. The gearbox system may include a stator gear having a plurality of stator teeth and an output plate having an output axis substantially aligned with the rotation axis and a plurality of output teeth.Type: ApplicationFiled: January 6, 2016Publication date: July 6, 2017Applicant: The Boeing CompanyInventors: Robert J. Atmur, William Patrick Sargent
-
Publication number: 20170122409Abstract: A wobble plate drive system may include a stator having a central axis and a plurality of stator teeth disposed on an inner cylindrical surface. The system may further include a wobble plate having a wobble axis disposed at a non-zero angle relative to the central axis, an outer cylindrical surface, and an upper annular surface. A plurality of wobble teeth may be disposed on the outer cylindrical surface and a plurality of face teeth may be disposed on the upper annular surface. The system may further include an output gear having an output axis substantially aligned with the central axis and a lower annular surface. A plurality of output teeth may be disposed on the lower annular surface. The wobble plate may be configured to rotate, the plurality of wobble teeth may be configured to engage with the plurality of stator teeth, and the plurality of face teeth may be configured to engage with the plurality of output teeth as the wobble plate nutates around the stator.Type: ApplicationFiled: November 4, 2015Publication date: May 4, 2017Applicant: THE BOEING COMPANYInventors: Robert J. Atmur, William Patrick Sargent