Patents by Inventor William R. Allmon

William R. Allmon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6957592
    Abstract: The invention comprises a vessel for solid phase micro-extraction chemical sampling. The vessel includes a container having an open end and a cap used to close the open end. The cap has a holder to hold a solid phase coated fiber within an interior of the container. There also is an inlet at a first location of the vessel and an outlet at a second location of the vessel. The inlet and the outlet are adapted to fill the vessel with a material to be exposed to the solid phase coated fiber. The vessel also includes a diffuser plate attached to the container. The plate is adapted to reduce fluid forces exerted on the solid phase coated fiber as material flows from the inlet to the outlet. The purpose of the diffuser plate is both to assure that forces are reduced and to provide laminar flow to assure rapid and complete exchange of the fluid in the vessel.
    Type: Grant
    Filed: April 21, 2003
    Date of Patent: October 25, 2005
    Assignee: The Johns Hopkins University
    Inventors: Wayne I. Sternberger, Stuart A. Goemmer, Rebecca F. Vertes, Micah A. Carlson, William R. Allmon, Alexander E. Dence, Stanley G. Reach, Adam K. Arabian
  • Patent number: 6841773
    Abstract: A field portable mass spectrometer system comprising a sample collector and a sample transporter. The sample transporter interfaces with the sample collector to receive sample deposits thereon. The system further comprises a time of flight (TOF) mass spectrometer. The time of flight mass spectrometer has a sealable opening that receives the sample transported via the sample transporter in an extraction region of the mass spectrometer. The system further comprises a control unit that processes a time series output by the mass spectrometer for a received sample and identifies one or more agents contained in the sample.
    Type: Grant
    Filed: May 23, 2001
    Date of Patent: January 11, 2005
    Assignee: The Johns Hopkins University
    Inventors: Michael P. McLoughlin, William R. Allmon, Charles W. Anderson, Micah A. Carlson, Nicholas H. Evancich, Wayne A. Bryden, Scott A. Ecelberger, James T. Velky, Daniel J. DeCicco, Timothy J. Cornish
  • Patent number: 6837121
    Abstract: The invention comprises a material sampling interface that includes one or more inlet manifolds and one or more outlet manifolds and piping running to and from the manifolds. There are rungs connecting the inlet manifold to the outlet manifold. In addition, a bypass rung is positioned between the inlet manifold and the outlet manifold, with a bypass valve positioned on the bypass. Each of the rungs has piping connected to the inlet and outlet manifolds and a removable reservoir connected to the piping. The reservoir includes an internal removable sampler adapted to sample the material. There is an inlet valve connected to the piping between the reservoir and the inlet manifold and an outlet valve connected to the piping between the reservoir and the outlet manifold. The invention is capable of sampling any flowable material including fluids, gases, particles, etc.
    Type: Grant
    Filed: April 21, 2003
    Date of Patent: January 4, 2005
    Assignee: The Johns Hopkins University
    Inventors: Waynle I. Sternberger, Stuart A. Goemmer, Alexander E. Dence, Stanley G. Reach, Cheryl S. Schein, Micah A. Carlson, William R. Allmon
  • Publication number: 20040222372
    Abstract: A field portable mass spectrometer system comprising a sample collector and a sample transporter. The sample transporter interfaces with the sample collector to receive sample deposits thereon. The system further comprises a time of flight (TOF) mass spectrometer. The time of flight mass spectrometer has a sealable opening that receives the sample transported via the sample transporter in an extraction region of the mass spectrometer. The system further comprises a control unit that processes a time series output by the mass spectrometer for a received sample and identifies one or more agents contained in the sample.
    Type: Application
    Filed: February 27, 2002
    Publication date: November 11, 2004
    Inventors: Michael P. McLoughlin, William R. Allmon, Charles W. Anderson, Micah A. Carlson, Nicholas H. Evancich, Wayne A. Bryden, Scott A. Ecelberger, James T. Velky, Daniel J. DeCicco, Timothy J. Cornish
  • Publication number: 20040035191
    Abstract: The invention comprises a material sampling interface that includes one or more inlet manifolds and one or more outlet manifolds and piping running to and from the manifolds. There are rungs connecting the inlet manifold to the outlet manifold. In addition, a bypass rung is positioned between the inlet manifold and the outlet manifold, with a bypass valve positioned on the bypass. Each of the rungs has piping connected to the inlet and outlet manifolds and a removable reservoir connected to the piping. The reservoir includes an internal removable sampler adapted to sample the material. There is an inlet valve connected to the piping between the reservoir and the inlet manifold and an outlet valve connected to the piping between the reservoir and the outlet manifold. The invention is capable of sampling any flowable material including fluids, gases, particles, etc.
    Type: Application
    Filed: April 21, 2003
    Publication date: February 26, 2004
    Inventors: Waynle I. Sternberger, Stuart A. Goemmer, Alexander E. Dence, Stanley G. Reach, Cheryl S. Schein, Micah A. Carlson, William R. Allmon
  • Publication number: 20040037747
    Abstract: The invention comprises a vessel for solid phase micro-extraction chemical sampling. The vessel includes a container having an open end and a cap used to close the open end. The cap has a holder to hold a solid phase coated fiber within an interior of the container. There also is an inlet at a first location of the vessel and an outlet at a second location of the vessel. The inlet and the outlet are adapted to fill the vessel with a material to be exposed to the solid phase coated fiber. The vessel also includes a diffuser plate attached to the container. The plate is adapted to reduce fluid forces exerted on the solid phase coated fiber as material flows from the inlet to the outlet. The purpose of the diffuser plate is both to assure that forces are reduced and to provide laminar flow to assure rapid and complete exchange of the fluid in the vessel.
    Type: Application
    Filed: April 21, 2003
    Publication date: February 26, 2004
    Inventors: Wayne I. Sternberger, Stuart A. Goemmer, Rebecca F. Vertes, Micah A. Carlson, William R. Allmon, Alexander E. Dence, Stanley G. Reach
  • Patent number: 6647983
    Abstract: A low-pressure valve enabling precise control of a fluid flow rate through the valve during cyclical operation of the valve. The valve is useful for controlling air delivery to a patient as part of a portable ventilator. The valve comprises a housing having an inlet 16 and two outlets 18 and 20. A wiper plate 22 and an orifice plate 24 are disposed inside of the housing. Transverse movement of the wiper plate 22 relative to the orifice plate 24, powered for example by a servomotor 34, simultaneously and alternatively covers and uncovers various openings 26 in the orifice plate 24. The total flow through the valve is thereby divided between the two outlets 78 and 20.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: November 18, 2003
    Assignee: The Johns Hopkins University
    Inventors: Dexter G. Smith, Michael P. Boyle, Protagoras N. Cutchis, William R. Allmon
  • Publication number: 20010035187
    Abstract: A low-pressure valve enabling precise control of a fluid flow rate through the valve during cyclical operation of the valve. The valve is useful for controlling air delivery to a patient as part of a portable ventilator. The valve comprises a housing having an inlet 16 and two outlets 18 and 20. A wiper plate 22 and an orifice plate 24 are disposed inside of the housing. Transverse movement of the wiper plate 22 relative to the orifice plate 24, powered for example by a servomotor 34, simultaneously and alternatively covers and uncovers various openings 26 in the orifice plate 24. The total flow through the valve is thereby divided between the two outlets 78 and 20.
    Type: Application
    Filed: March 6, 2001
    Publication date: November 1, 2001
    Inventors: Dexter G. Smith, Michael P. Boyle, Protagoras N. Cutchis, William R. Allmon