Patents by Inventor William R. Cawthorne

William R. Cawthorne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120109479
    Abstract: A method for operating a powertrain system including a torque machine coupled to a drive wheel of a vehicle includes determining a regenerative braking capacity of the powertrain system. In response to a net operator torque request including a braking torque request, a friction braking torque command to operate a friction brake system and a regenerative braking torque request for the torque machine are coincidentally generated, a torque command is generated for controlling operation of the torque machine in response to the regenerative braking torque request, and the friction braking torque command is adjusted by an amount corresponding to a difference between the braking torque request and the regenerative braking torque request.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 3, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Thomas E. Ganley, Sean W. McGrogan, William R. Cawthorne, Hanne Buur, Alexander K. Rustoni, Anthony H. Heap
  • Patent number: 8155815
    Abstract: A method to monitor integrity of a motor torque command for a transmission in a hybrid powertrain system includes calculating motor torque commands for the torque generating machines. Torque corrections for the motor torque commands are determined. The motor torque commands are adjusted based upon the torque corrections. The adjusted motor torque commands are verified based upon an estimated output torque.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: April 10, 2012
    Assignees: GM Global Technology Operation LLC, Daimler AG, Chrysler LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: William R. Cawthorne, Hanne Buur, Paul A Stanowski
  • Publication number: 20120065864
    Abstract: A method for selectively creating vacuum in a hybrid powertrain controlled by a hybrid control processor and having an engine controlled by an engine control module includes requesting a pressure differential between a first intake point and a second intake point, wherein the first intake point and the second intake point are separated by a throttle. An actual torque capacity is calculated for the engine, wherein the actual torque capacity occurs when pressure is substantially equal at the first intake point and at the second intake point. A desired torque capacity is also calculated for the engine, wherein the desired torque capacity reduces the pressure at the second intake point relative to the pressure at the first intake point, such that the requested pressure differential is created. The engine is then operated at one of the desired torque capacity and the actual torque capacity.
    Type: Application
    Filed: September 9, 2010
    Publication date: March 15, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Christopher E. Whitney, William R. Cawthorne, Anthony H. Heap, Jeffrey M. Kaiser, Dennis A. Light, Jon C. Wasberg, Weixin Yan
  • Patent number: 8135532
    Abstract: A method for controlling a powertrain system includes monitoring a state-of-charge of the energy storage device and determining a first set of electric power limits and a second set of electric power limits based on the state-of-charge of the energy storage device. The method further includes providing a power range for opportunity charging and discharging of the energy storage device based on the first set of electric power limits. The method further includes providing a power range for controlling output power of the energy storage device based on the second set of electric power limits.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: March 13, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler LLC, Bayerische Motoen Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, William R. Cawthorne, Wilfried Brunssen
  • Patent number: 8120320
    Abstract: A battery control system comprises a battery control module, an averaging module, and a supervisor module. The battery control module measures voltages of N energy storage blocks, wherein N is an integer greater than one, and determines a first voltage of the voltages at a first rate. The first voltage is one of a maximum voltage and a minimum voltage. The averaging module calculates an average voltage at a second rate that is greater than the first rate. The average voltage is based on a measured total voltage of an energy storage pack including the N energy storage blocks. The supervisor module generates an updated voltage based on the first voltage and the average voltage and controls a vehicle system based on the updated voltage.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: February 21, 2012
    Inventor: William R. Cawthorne
  • Patent number: 8121767
    Abstract: A method for controlling torque in a hybrid powertrain system to selectively transfer mechanical power to an output member includes monitoring operator inputs to an accelerator pedal and to a brake pedal. An immediate accelerator output torque request, a predicted accelerator output torque request, an immediate brake output torque request, a predicted brake output torque request, and an axle torque response type are determined. An output torque command to the output member of the transmission is determined based upon the immediate accelerator output torque request and the immediate brake output torque request.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: February 21, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, William R. Cawthorne
  • Patent number: 8118122
    Abstract: A method to monitor integrity of a signal in a distributed control system for a powertrain system includes communications link transmitting signals between control modules. Integrity of each of the control modules is monitored. The signal is generated and verified in an originating control module and transmitted to a receiving control module whereat it is subsequently verified.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: February 21, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Hanne Buur, William R. Cawthorne, Leonard G. Wozniak
  • Publication number: 20120032506
    Abstract: A starting system for an internal combustion engine includes a starter motor configured to transfer torque to the engine during an engine starting event, a low-voltage power bus including a first bus segment and a second bus segment, a controllable isolation circuit including a first state wherein the first and second bus segments are electrically coupled and a second state wherein the first and second bus segments are electrically isolated, a low-voltage battery and the starter motor electrically coupled to the first bus segment, an accessory power module and a power supply for a control module electrically coupled to the second bus segment; and the control module configured to control the isolation circuit to the second state to electrically isolate the first bus segment from the second bus segment during the engine starting event.
    Type: Application
    Filed: August 5, 2010
    Publication date: February 9, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: William R. Cawthorne, Jy-Jen F. Sah
  • Patent number: 8112194
    Abstract: A hybrid powertrain system includes an engine and a torque actuator coupled to a driveline to transfer tractive power to a wheel including a friction brake. A method includes monitoring an operator braking request and determining a request for regenerative braking torque. Operation of the torque actuator to react tractive power is inhibited when a fault is detected in the monitored request for regenerative braking torque and achieved regenerative braking torque.
    Type: Grant
    Filed: October 4, 2008
    Date of Patent: February 7, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Hanne Buur, William R. Cawthorne
  • Patent number: 8078371
    Abstract: Controlling a hybrid powertrain includes monitoring an operator torque request, determining maximum and minimum allowable transmission output torques based upon the operator torque request, determining a commanded transmission output torque, and comparing the commanded transmission output torque and each of the maximum and minimum allowable transmission output torques.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: December 13, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: William R. Cawthorne, Leonard G. Wozniak, Paul A Stanowski, Hanne Buur
  • Patent number: 8054083
    Abstract: A hybrid electric vehicle (HEV) has an algorithm for executing a method for diagnosing a high-voltage (HV) fault condition aboard the HEV. The HEV includes a high-voltage (HV) battery, an auxiliary power module (APM), a power inverter module (PIM), and a three-phase motor/generator unit (MGU). A controller executes the method to thereby measure a DC output current from the HV battery, a DC inlet current into the APM, and a pair of AC phase currents in the MGU. The method further includes calculating a DC inlet current into the PIM using the AC phase currents, diagnosing the HV fault condition using the DC output currents and the DC inlet currents, and executing a control action in response to the diagnosed condition. The method can include shutting off the APM to determine whether the APM is the root cause of the HV fault condition.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: November 8, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Harry J. Bauer, Wei D. Wang, Bon Ho Bae, William R. Cawthorne
  • Publication number: 20110213518
    Abstract: A method for operating an electric motor is provided. The method includes receiving a torque request; determining long term torque capabilities and short term torque capabilities of the electric motor; generating a torque command based on the torque request and at least one of the long term torque capabilities or the short term torque capabilities; and controlling the electric motor in accordance with the torque command.
    Type: Application
    Filed: March 1, 2010
    Publication date: September 1, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: BRIAN A. WELCHKO, NITINKUMAR R. PATEL, LEAH DUNBAR, WILLIAM R. CAWTHORNE, STEVEN E. SCHULZ
  • Publication number: 20110208378
    Abstract: An exemplary method for operating a hybrid vehicle in the event that there is a problem with an auxiliary power source, such as an internal combustion engine or a fuel cell. According to one embodiment, the method provides a power management scheme for a variety of situations where an auxiliary power source experiences a problem; this may include situations where an internal combustion engine runs out of fuel, where there is a mechanical or electrical malfunction, or any other instance where the auxiliary power source is unable to generate and/or provide electrical energy for the hybrid vehicle. The power management scheme conserves the vehicle's primary power source, which is typically a battery, in order to provide the hybrid vehicle with an extended driving range.
    Type: Application
    Filed: February 24, 2010
    Publication date: August 25, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Eric E. Krueger, Christopher A. Kinser, William R. Cawthorne, Aniket Kothari
  • Patent number: 8002665
    Abstract: A method for controlling a powertrain system includes controlling a first power actuator based upon a set of power constraints for the first power actuator. The method further includes controlling a second power actuator based upon the set of power constraints for the second power actuator.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: August 23, 2011
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, William R. Cawthorne
  • Publication number: 20110202211
    Abstract: Methods and systems are provided for controlling an electrical system of a vehicle. Sensors are used to obtain first data for a first path of calculations and second data for a second path of calculations. The first path comprises a first plurality of calculations of generating a value of a parameter pertaining to the electrical system, and the second path comprises a second plurality of calculations of monitoring the electrical system with respect to the first path. A processor is coupled to the plurality of sensors, and is configured to determine whether a data frozen flag is active, perform the first plurality of calculations of the first path using the first data if the first data flag is inactive, and perform the second plurality of calculations of the second path if the first data flag is active.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 18, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: BRIAN A. WELCHKO, SILVA HITI, ABBAS RAFTARI, JEONG J. PARK, HANNE BUUR, WEI D. WANG, BRIAN R. MEDEMA, WILLIAM R. CAWTHORNE, JACKIE L. CUI
  • Publication number: 20110202226
    Abstract: Methods and systems are provided for monitoring an electrical system of a vehicle. Data pertaining to the electrical system is obtained. Calculation modules are performed using the data to generate intermediate determinations. An aggregate calculation module is performed using each of the intermediate determinations to generate an aggregate determination pertaining to the electrical system. Redundant intermediate calculations are performed using the data to generate redundant intermediate determinations. Each of the redundant intermediate determinations is used for comparison with a respective intermediate determination.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 18, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Brian A. Welchko, Abbas Raftari, Silva Hiti, Jeong J. Park, Hanne Buur, Wei D. Wang, William R. Cawthorne
  • Patent number: 7999668
    Abstract: A system is provided for implementing a series interlock loop. An example of the interlock system includes a series interlock loop, a data table, and a control module. The series interlock loop has an overall electrical characteristic. The series interlock loop includes first and second safety interlocks electrically coupled in series. Each interlock includes a switch coupled in parallel with an impedance value. The data table is configured to store values corresponding to the impedance values. The control module is communicatively coupled to the data table and configured to receive an indication of the overall electrical characteristic and to compare the overall electrical characteristic to the values in the data table to thereby identify an open one of the first and second safety interlocks.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: August 16, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: William R. Cawthorne, James E. Tarchinski
  • Patent number: 7960999
    Abstract: A method for evaluating a permanent magnet motor, which includes a rotor with a plurality of magnets mounted thereon, and a stator with a plurality of windings in proximity to the rotor and coupled to an inverter, includes spinning the motor such that a voltage is induced in the windings of the stator and the inverter; measuring the voltage on the inverter; calculating the voltage constant from the motor from the measured voltage; comparing the voltage constant to accepted voltage constants; and identifying the motor as not acceptable if the voltage constant is outside of a range of the accepted voltage constants.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: June 14, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: William R. Cawthorne, Sean E. Gleason
  • Patent number: 7957873
    Abstract: A control method is provided including detecting transmission output speed and a forward and reverse shift request, and executing inhibit limits when the detected speed exceeds a predetermined threshold speed. The inhibit limits slow the output speed to zero upon detection of a shift request at output speeds above the threshold, with a pedal progression map executed upon reaching zero output speed. The limits approach zero output torque as vehicle speed increases, reaching zero at a relatively high speed and simulating a neutral transmission upon a detected shift request at high speed. A vehicle is also provided having a transmission, a sensor for detecting transmission output speed, a sensor for detecting a shift request, and a PCM having an algorithm and a threshold transmission output speed. The algorithm inhibits a shift event in the direction opposite that of vehicle travel upon detection when vehicle speed is greater than the threshold.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: June 7, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: William R. Cawthorne, Leonard G. Wozniak
  • Publication number: 20110130903
    Abstract: A method controls a motor generator unit (MGU) aboard a vehicle. An event signal is generated using a transmission controller, with the event signal predicting a transient vehicle event, e.g., auto start, transmission shift, fuel cycling, etc. The event signal is received by a motor controller, which determines a predicted level of motor output torque required from the MGU during the transient vehicle. Electromagnetic flux of the MGU is increased to a calibrated threshold level prior to commencement of the transient vehicle event. The MGU may be used for regenerating energy during the transient vehicle event. The MGU is then used to facilitate execution of the transient vehicle event. A vehicle having the MGU uses a controller(s) to automatically increase electromagnetic flux of the MGU prior to the transient vehicle event using the method as noted above.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 2, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Adam J. Heisel, William R. Cawthorne, Sean W. McGrogan, John L. Lahti