Patents by Inventor William R. Gower

William R. Gower has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9051386
    Abstract: A method of treating inflammation by administering a therapeutically effective amount of a human immunosuppressant protein (HISP) to a subject is presented. The inventors have discovered a novel immunosuppressive protein purified from the supernatant of hNT cell culture. The immunosuppressant protein has a molecular weight of about 40-100 kDa, an isoelectric point of about 4.4, a net ionic charge and is capable of suppressing T-cell activation, T-cell proliferation and the production of IL-2. This protein can be used in treating inflammation, preventing graft rejection after transplantation, treating autoimmune diseases and suppressing allergic responses as well as other uses.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: June 9, 2015
    Assignee: University of South Florida
    Inventors: Paul R. Sanberg, Robert W. Engelman, William R. Gower
  • Publication number: 20140234401
    Abstract: A method of treating inflammation by administering a therapeutically effective amount of a human immunosuppressant protein (HISP) to a subject is presented. The inventors have discovered a novel immunosuppressive protein purified from the supernatant of hNT cell culture. The immunosuppressant protein has a molecular weight of about 40-100 kDa, an isoelectric point of about 4.4, a net ionic charge and is capable of suppressing T-cell activation, T-cell proliferation and the production of IL-2. This protein can be used in treating inflammation, preventing graft rejection after transplantation, treating autoimmune diseases and suppressing allergic responses as well as other uses.
    Type: Application
    Filed: March 20, 2014
    Publication date: August 21, 2014
    Applicant: University of South Florida
    Inventors: Paul R. Sanberg, Robert W. Engelman, William R. Gower
  • Patent number: 8716216
    Abstract: A composition of an immunosuppressant protein (HISP) which is achieved by the steps of obtaining supernatant from hNT neuronal cells; exposing the supernatant to preparative polyacrylamide gel; placing the active isoelectric fraction on a Blue Sepharose column to bind albumin; and collecting the free fraction containing the concentrated, isolated HISP. The HISP is anionic, has a molecular weight of 40-100 kDa, an isoelectric point of about 4.8 and is obtained from the supernatant of hNT cells. HISP can suppress proliferation of responder peripheral blood mononuclear cells in allogeneic mixed lymphocyte cultures; HISP can suppress T-cell proliferation and IL-2 production in response to phorbol 12-myristate 13-acetate (PMA), ionomycin and concanavalin-A. HISP does not act through the T-cell receptor-CD3 complex or via altered accessory signal cells.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: May 6, 2014
    Assignee: University of South Florida
    Inventors: Robert W. Engelman, William R. Gower, Paul R. Sanberg
  • Publication number: 20080280812
    Abstract: A method for purifying an immunosuppressant protein (HISP) has the steps of obtaining supernatant from hNT cells; exposing the supernatant to preparative polyacrylamide gel electrophoresis to produce 20 isoelectric fractions, including active isoelectric fraction #10; placing the active isoelectric fraction on a Blue Sepharose column to bind albumin; and collecting the free fraction containing the concentrated, isolated HISP. Also disclosed is a method of treating inflammation, using an effective amount of an HISP. The HISP is anionic, has a molecular weight of 40-100 kDa, an isoelectric point of about 4.8 and is obtained from the supernatant of hNT cells, but not from NCCIT embryonal carcinoma cells. T98G glioblastoma cells or THP-1 monocytic leukemia cells. HISP can maintain T cells in a quiescent G.sub.0/G.sub.1 state without lowering their viability. HISP loses activity when treated with heat, pH2, pH11, or mixed with trypsin or carboxypeptidase, but not with neuraminidase.
    Type: Application
    Filed: May 9, 2008
    Publication date: November 13, 2008
    Applicant: UNIVERSITY OF SOUTH FLORIDA
    Inventors: Paul R. Sanberg, Robert W. Engelman, William R. Gower
  • Patent number: 7388076
    Abstract: A method for purifying an immunosuppressant protein (HISP) has the steps of obtaining supernatant from hNT cells; exposing the supernatant to preparative polyacrylamide gel electrophoresis to produce 20 isoelectric fractions, including active isoelectric fraction #10; placing the active isoelectric fraction on a Blue Sepharose column to bind albumin; and collecting the free fraction containing the concentrated, isolated HISP. Also disclosed is a method of treating inflammation, using an effective amount of an HISP. The HISP is anionic, has a molecular weight of 40-100 kDa, an isoelectric point of about 4.8 and is obtained from the supernatant of hNT cells, but not from NCCIT embryonal carcinoma cells, T98G glioblastoma cells or THP-1 monocytic leukemia cells. HISP can maintain T cells in a quiescent G0/G1 state without lowering their viability. HISP loses activity when treated with heat, pH2, pH11, or mixed with trypsin or carboxypeptidase, but not with neuraminidase.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: June 17, 2008
    Assignee: University of South Florida
    Inventors: Paul R. Sanberg, Robert W. Engelman, William R. Gower
  • Publication number: 20040058871
    Abstract: A method for purifying an immunosuppressant protein (HISP) has the steps of obtaining supernatant from hNT cells; exposing the supernatant to preparative polyacrylamide gel electrophoresis to produce 20 isoelectric fractions, including active isoelectric fraction #10; placing the active isoelectric fraction on a Blue Sepharose column to bind albumin; and collecting the free fraction containing the concentrated, isolated HISP. Also disclosed is a method of treating inflammation, using an effective amount of an HISP. The HISP is anionic, has a molecular weight of 40-100 kDa, an isoelectric point of about 4.8 and is obtained from the supernatant of hNT cells, but not from NCCIT embryonal carcinoma cells, T98G glioblastoma cells or THP-1 monocytic leukemia cells. HISP can maintain T cells in a quiescent G0/G1 state without lowering their viability. HISP loses activity when treated with heat, pH2, pH11, or mixed with trypsin or carboxypeptidase, but not with neuraminidase.
    Type: Application
    Filed: July 16, 2003
    Publication date: March 25, 2004
    Applicant: University of South Florida, a non-profit institution
    Inventors: Paul R. Sanberg, Robert W. Engelman, William R. Gower