Patents by Inventor William R. Krause

William R. Krause has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200289183
    Abstract: A driver for inserting and removing flexible and non-flexible fastening devices. The driver has an attachment for interfacing with the proximal end of the device and a flexible driver rod for interfacing with the distal end of the device. Alternatively, the flexible driver rod can interface with both the distal and proximal ends of the fastening device. The driver further interfaces with a guide wire or other means that connect with the interior of the device.
    Type: Application
    Filed: March 13, 2020
    Publication date: September 17, 2020
    Inventors: William R. Krause, Daniel W. Christensen
  • Publication number: 20200262038
    Abstract: A flexible shaft, having a first end and, a second end and capable of being bent about its axis while transferring rotary motion from a device to tool is disclosed. The shaft, manufactured from a rigid material, has at least one flexible segment having two sinuous slots ascending in a helical path from a common start point in opposite rotational directions. In other segments the slots can be a single helical slot, double helical slots, parallel or crossing, or circumferential. The helical paths can vary within each segment or from segment to segment.
    Type: Application
    Filed: February 25, 2020
    Publication date: August 20, 2020
    Inventors: William R Krause, Garland Edwards
  • Patent number: 10569396
    Abstract: A flexible shaft, having a first end and, a second end and capable of being bent about its axis while transferring rotary motion from a device to tool is disclosed. The shaft, manufactured from a rigid material, has at least one flexible segment having two sinuous slots ascending in a helical path from a common start point in opposite rotational directions. In other segments the slots can be a single helical slot, double helical slots, parallel or crossing, or circumferential. The helical paths can vary within each segment or from segment to segment.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: February 25, 2020
    Inventors: William R. Krause, Garland Edwards
  • Publication number: 20190120282
    Abstract: A flexible connecting rod is manufactured from a rigid material and having a substantially cylindrical hollow body, a leading segment with a securing area and a trailing segment having a trailing edge and a securing area. The body has at least one flexible center section, each having at least one slot to provide flexibility. The slot follows a sinuous, serpentine path to form a plurality of interlocking teeth that can follow a helical or a concentric path. Each slot has a proximal end spaced from the trailing segment and a distal end spaced from the leading segment. With multiple slots the proximal end of a slot can be spaced from, and separated by an inflexible section, or adjacent to, a distal end of a subsequent slot.
    Type: Application
    Filed: October 9, 2018
    Publication date: April 25, 2019
    Inventor: William R Krause
  • Patent number: 10136930
    Abstract: A flexible fastening device having multiple segments, one or more of which are flexible and one or more segments that also include threads. The flexibility is created through the use of at least one helical slot formed generally in the center segment of the element. Additional flexible segments also have at least one helical slot in either the same helical rotation and pattern or in an opposite rotation and/or different pattern. An elastomeric material can fill the hollow body, extend into the slots and/or encompass the exterior. The flexible fastening device can have a hollow body, including leading and trailing edge, or can have a partially hollow body.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: November 27, 2018
    Inventor: William R. Krause
  • Patent number: 9956045
    Abstract: An apparatus for cleaning cannulated surgical tools comprises a hollow body with lavage fluid holes and a brush adaptor at a first end and an inlet adaptor affixed to a second end. A body hub, consisting of inlet channel and drain channel is in liquid communication with an inner lavage fluid tube. A lavage connection tube is in liquid communication with the hollow body at the brush adaptor and through the upper connecting lavage fluid orifice. An inner lavage fluid tube, having an inner channel, extends within the hollow body with a distal end in liquid communication with the inner channel within the inlet adaptor. There are multiple spray openings proximate the distal end of the inner lavage fluid connection tube and a tube brush is dimensioned to fit within the inner channel. The apparatus can be combined with a reservoir to make the unit self-contained.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: May 1, 2018
    Inventor: William R. Krause
  • Publication number: 20180065235
    Abstract: A flexible shaft, having a first end and, a second end and capable of being bent about its axis while transferring rotary motion from a device to tool is disclosed. The shaft, manufactured from a rigid material, has at least one flexible segment having two sinuous slots ascending in a helical path from a common start point in opposite rotational directions. In other segments the slots can be a single helical slot, double helical slots, parallel or crossing, or circumferential. The helical paths can vary within each segment or from segment to segment.
    Type: Application
    Filed: November 7, 2017
    Publication date: March 8, 2018
    Inventors: William R Krause, Garland Edwards
  • Publication number: 20180049775
    Abstract: An improved flexible component used for dynamic stabilization of spinal segments for the treatment of vertebrae deformities and injuries and for the replacement of a complete or segment of the body of a vertebra in the spine is described. The flexible component is comprised of a suitable implant material with a longitudinal bore the entire length and an appropriately formed slots that extend spirally around the flexible spinal element either continuously or segmentally. The flexible component can be encapsulated, fully or partially, in a suitable implant grade elastomeric resilient material. When used for a dynamic stabilization device, the element is attached to the vertebral bodies by pedicle screws know to those in the art.
    Type: Application
    Filed: October 31, 2017
    Publication date: February 22, 2018
    Inventor: William R. Krause
  • Patent number: 9808867
    Abstract: A tool having a flexible shaft, a first end and, a second end and capable of being bent about its axis. The tool transfers rotary motion from a device to tool. The shaft, manufactured from a rigid material, has at least one flexible segment, each flexible segment have at least one sinuous slot ascending in a helical path. With multiple segments, the helical path of the slots can be opposite or the same. With one or more segments having multiple slots, the slots can be parallel or have opposite ascensions, thereby crossing one another. The helical paths can vary within each segment or from segment to segment.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: November 7, 2017
    Assignee: Flex Technology, Inc.
    Inventors: William R. Krause, Garland Edwards
  • Patent number: 9801663
    Abstract: An improved flexible component used for dynamic stabilization of spinal segments for the treatment of vertebrae deformities and injuries and for the replacement of a complete or segment of the body of a vertebra in the spine is described. The flexible component is comprised of a solid, suitable implant material with a longitudinal bore the entire length and an appropriately formed slot which extends spirally around the shaft either continuously or segmentally. The flexible component may be encapsulated, fully or partially, in a suitable implant grade elastomeric resilient material. When used for a dynamic stabilization device, the component is attached to the vertebral bodies by pedicle screws know to those in the art. When used as a vertebral replacement device, attached to the component's opposite ends are members for attachment to the adjacent vertebra that allow for height and angular adjustment.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: October 31, 2017
    Assignee: Flex Technology, Inc.
    Inventor: William R. Krause
  • Publication number: 20170189085
    Abstract: A flexible intramedullary nail is disclosed that is manufactured from a biocompatible rigid material and having a substantially cylindrical hollow body, a leading segment with an entry hole at a distal end and at least one securing means and a trailing segment having a trailing edge and an attachment mechanism. The body has at least one flexible center section, each having at least one slot to provide flexibility. In one embodiment the at least one slot follows a sinuous, serpentine path to form a plurality of interlocking teeth that can follow a helical or a concentric path. Each of the slots has a proximal end and a distal end, with the proximal end being spaced from the trailing segment and the distal end being spaced from the leading segment. When multiple slots are incorporated, the proximal end of a slot is spaced from a distal end of a subsequent slot.
    Type: Application
    Filed: February 28, 2017
    Publication date: July 6, 2017
    Inventor: William R. Krause
  • Publication number: 20170135737
    Abstract: A flexible fastening device having multiple segments, one or more of which are flexible and one or more segments that also include threads. The flexibility is created through the use of at least one helical slot formed generally in the center segment of the element. Additional flexible segments also have at least one helical slot in either the same helical rotation and pattern or in an opposite rotation and/or different pattern. An elastomeric material can fill the hollow body, extend into the slots and/or encompass the exterior. The flexible fastening device can have a hollow body, including leading and trailing edge, or can have a partially hollow body.
    Type: Application
    Filed: November 1, 2016
    Publication date: May 18, 2017
    Applicant: Flex Technology, Inc.
    Inventor: William R. Krause
  • Publication number: 20170056979
    Abstract: A tool having a flexible shaft, a first end and, a second end and capable of being bent about its axis. The tool transfers rotary motion from a device to tool. The shaft, manufactured from a rigid material, has at least one flexible segment, each flexible segment have at least one sinuous slot ascending in a helical path. With multiple segments, the helical path of the slots can be opposite or the same. With one or more segments having multiple slots, the slots can be parallel or have opposite ascensions, thereby crossing one another. The helical paths can vary within each segment or from segment to segment.
    Type: Application
    Filed: August 31, 2015
    Publication date: March 2, 2017
    Inventors: William R. Krause, Garland Edwards
  • Patent number: 9579132
    Abstract: A flexible intramedullary nail is disclosed that is manufactured from a biocompatible rigid material and having a substantially cylindrical hollow body, a leading segment with an entry hole at a distal end and at least one securing means and a trailing segment having a trailing edge and an attachment mechanism. The body has at least one flexible center section, each having at least one slot to provide flexibility. In one embodiment the at least one slot follows a sinuous, serpentine path to form a plurality of interlocking teeth that can follow a helical or a concentric path. Each of the slots has a proximal end and a distal end, with the proximal end being spaced from the trailing segment and the distal end being spaced from the leading segment. When multiple slots are incorporated, the proximal end of a slot is spaced from a distal end of a subsequent slot.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 28, 2017
    Inventor: William R. Krause
  • Patent number: 9482260
    Abstract: A flexible fastening device having multiple segments, one or more of which are flexible and one or more segments that also include threads. The flexibility is created through the use of at least one helical slot formed generally in the center segment of the element. Additional flexible segments also have at least one helical slot in either the same helical rotation and pattern or in an opposite rotation and/or different pattern. An elastomeric material can fill the hollow body, extend into the slots and/or encompass the exterior. The flexible fastening device can have a hollow body, including leading and trailing edge, or can have a partially hollow body.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: November 1, 2016
    Inventor: William R Krause
  • Publication number: 20160051287
    Abstract: An improved flexible component used for dynamic stabilization of spinal segments for the treatment of vertebrae deformities and injuries and for the replacement of a complete or segment of the body of a vertebra in the spine is described. The flexible component is comprised of a solid, suitable implant material with a longitudinal bore the entire length and an appropriately formed slot which extends spirally around the shaft either continuously or segmentally. The flexible component may be encapsulated, fully or partially, in a suitable implant grade elastomeric resilient material. When used for a dynamic stabilization device, the component is attached to the vertebral bodies by pedicle screws know to those in the art. When used as a vertebral replacement device, attached to the component's opposite ends are members for attachment to the adjacent vertebra that allow for height and angular adjustment.
    Type: Application
    Filed: September 21, 2015
    Publication date: February 25, 2016
    Inventor: William R. Krause
  • Publication number: 20150305819
    Abstract: An apparatus for cleaning cannulated surgical tools comprises a hollow body with lavage fluid holes at a first end along with a brush adaptor affixed to the hollow body. An inlet adaptor is affixed, having to a second end of the hollow body. A body hub, consisting of inlet channel and drain channel is in liquid communication with an inner lavage fluid tube. A lavage connection tube is in liquid communication with the hollow body at the brush adaptor and through the upper connecting lavage fluid orifice. An inner lavage fluid tube, having an inner channel, extends within the hollow body with a distal end in liquid communication at a proximal end of the inner channel within the inlet adaptor. There are multiple spray openings proximate the distal end of the inner lavage fluid connection tube and a tube brush is dimensioned to fit within the inner channel. The apparatus can be provided with attachment members and combined with a reservoir to make the unit self-contained.
    Type: Application
    Filed: March 11, 2015
    Publication date: October 29, 2015
    Inventor: William R Krause
  • Patent number: 9138263
    Abstract: An improved flexible component used for dynamic stabilization of spinal segments for the treatment of vertebrae deformities and injuries and for the replacement of a complete or segment of the body of a vertebra in the spine is described. The flexible component is comprised of a solid, suitable implant material with a longitudinal bore the entire length and an appropriately formed slot which extends spirally around the shaft either continuously or segmentally. The flexible component may be encapsulated, fully or partially, in a suitable implant grade elastomeric resilient material. When used for a dynamic stabilization device, the component is attached to the vertebral bodies by pedicle screws know to those in the art. When used as a vertebral replacement device, attached to the component's opposite ends are members for attachment to the adjacent vertebra that allow for height and angular adjustment.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: September 22, 2015
    Inventor: William R. Krause
  • Publication number: 20140114312
    Abstract: A flexible intramedullary nail is disclosed that is manufactured from a biocompatible rigid material and having a substantially cylindrical hollow body, a leading segment with an entry hole at a distal end and at least one securing means and a trailing segment having a trailing edge and an attachment mechanism. The body has at least one flexible center section, each having at least one slot to provide flexibility. In one embodiment the at least one slot follows a sinuous, serpentine path to form a plurality of interlocking teeth that can follow a helical or a concentric path. Each of the slots has a proximal end and a distal end, with the proximal end being spaced from the trailing segment and the distal end being spaced from the leading segment. When multiple slots are incorporated, the proximal end of a slot is spaced from a distal end of a subsequent slot.
    Type: Application
    Filed: March 14, 2013
    Publication date: April 24, 2014
    Inventor: William R. Krause
  • Patent number: 8353935
    Abstract: The invention relates to a flexible spine stabilization and/or vertebral replacement system and having one or more flexible segments within a spinal element. The flexibility is created through the use of at least one circumferential slot formed in the spinal element. One or more fasteners are connected to the distal and proximal attachments and secured to the vertebra. The spinal element can have an elastomeric material in any or all of the following combinations: filling at least one of the at least one slot; at least a portion of the inside core; encompass at least a portion of the exterior diameter. Vertebral replacement is achieved by securing the spinal element to healthy inferior and superior vertebra through use of securing members.
    Type: Grant
    Filed: July 3, 2009
    Date of Patent: January 15, 2013
    Inventor: William R. Krause