Patents by Inventor William Randolph Stowell

William Randolph Stowell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8642170
    Abstract: A coating system that includes a plurality of portions, each portion comprising one or more layers. The coating system includes an outer portion, which is an infrared radiation (IR) interaction portion, that dissipates incident (IR). Underlying this outer portion is a performance portion. The performance portion comprises at least one layer that includes microspheres. Between the substrate and performance portion is a compliance portion. The compliance portion comprises at least one layer of high temperature material that has a coefficient of thermal expansion (CTE) intermediate the performance layer and the substrate. The compliance portion thus reduces any high temperature thermal mismatch between the substrate and the performance portion.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: February 4, 2014
    Assignee: General Electric Company
    Inventors: Daniel P. Ivkovich, William Randolph Stowell, Darrell Senile, Thomas W. Rentz, John F. Ackerman
  • Patent number: 7985463
    Abstract: Methods are provided for producing large volumes of small antenna arrays. In one embodiment, the method comprises the steps of creating an antenna array pattern as a computer file, printing the created pattern onto the surface of a suitable transfer paper, placing the printed image surface in contact with the surface of a material to be etched, and transferring the printed image to the surface of the material to be etched. The transfer can be effected by any combination of chemicals, heat, and/or pressure. After transfer of the printed image, the transfer paper is removed. The step of removing the transfer paper optionally includes wetting the transfer paper in a manner that dissolves the transfer paper leaving the printed antenna pattern on the surface of the material to be etched.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: July 26, 2011
    Assignee: General Electric Company
    Inventors: William Randolph Stowell, Michael R. Steele, Thomas Walter Rentz
  • Patent number: 7842335
    Abstract: A chemical composition and method for repairing a thermal barrier coating on a component designed for use in a hostile thermal environment, such as turbine, combustor and augmentor components of a gas turbine engine. The method repairs a thermal barrier coating on a component that has suffered localized damage to the thermal barrier coating. After cleaning the surface area of the component exposed by the localized spallation, a paste-like mixture of a ceramic composition comprising ceramic powders and nano-sized ceramic materials in a binder, further including an accelerant, is applied to the surface area of the component, and is optionally smoothed using mechanical means. The composition is then allowed to dry and cure to form a dried coating having polymeric characteristics. Upon subsequent heating, the dried coating reacts to produce a glassy ceramic repair coating.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: November 30, 2010
    Assignee: General Electric Company
    Inventors: Andrew Jay Skoog, Jane Ann Murphy, William Randolph Stowell, David E. Caldwell
  • Patent number: 7754043
    Abstract: An optical coating is applied to an article surface of an article by providing a deposition substrate other than the article surface, wherein the deposition substrate is made of a removable material. The optical coating is thereafter deposited onto the deposition substrate. The optical coating is thereafter transferred to the article surface using a transfer support, which may be the deposition substrate or may be a different piece. The method includes thereafter affixing the optical coating to the article surface, and thereafter removing the transfer support.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: July 13, 2010
    Assignee: General Electric Company
    Inventors: Daniel Peter Ivkovich, Jr., Andrew Jay Skoog, Jane Ann Murphy, Thomas Walter Rentz, William Randolph Stowell, Bryan Thomas Bojanowski
  • Patent number: 7695582
    Abstract: A method for forming a ceramic layer on the surface of a turbine component. This method comprises the following steps: (a) providing a turbine component having a surface; (b) providing at least one ceramic tape overlaying the component surface; and (c) manually pressing the at least one ceramic tape against the component surface at a temperature of from about 150° to about 700° F. (from about 66° to about 371° C.) so as to cause the at least one ceramic tape to adhere to the component surface.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: April 13, 2010
    Assignee: General Electric Company
    Inventors: William Randolph Stowell, Terry James Kent, Thomas Walter Rentz, Jane Ann Murphy, Daniel Peter Ivkovich, Andrew Jay Skoog
  • Patent number: 7588797
    Abstract: A chemical composition and method for repairing a thermal barrier coating on a component designed for use in a hostile thermal environment, such as turbine, combustor and augmentor components of a gas turbine engine. The method repairs a thermal barrier coating on a component that has suffered localized damage to the thermal barrier coating. After cleaning the surface area of the component exposed by the localized spallation, a paste-like mixture of a ceramic composition comprising ceramic powders and nano-sized ceramic materials in a binder is applied to the surface area of the component, and is optionally smoothed using mechanical means. The composition is then allowed to dry and cure to form a dried coating having polymeric characteristics. Upon subsequent heating, the dried coating reacts to produce a glassy ceramic repair coating.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: September 15, 2009
    Assignee: General Electric Company
    Inventors: Andrew Jay Skoog, Jane Ann Murphy, William Randolph Stowell, David E. Caldwell
  • Publication number: 20090169835
    Abstract: Methods are provided for producing large volumes of small antenna arrays. In one embodiment, the method comprises the steps of creating an antenna array pattern as a computer file, printing the created pattern onto the surface of a suitable transfer paper, placing the printed image surface in contact with the surface of a material to be etched, and transferring the printed image to the surface of the material to be etched. The transfer can be effected by any combination of chemicals, heat, and/or pressure. After transfer of the printed image, the transfer paper is removed. The step of removing the transfer paper optionally includes wetting the transfer paper in a manner that dissolves the transfer paper leaving the printed antenna pattern on the surface of the material to be etched.
    Type: Application
    Filed: March 10, 2009
    Publication date: July 2, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: William Randolph STOWELL, Michael R. STEELE, Thomas Walter RENTZ
  • Publication number: 20090169898
    Abstract: A coating system that includes a plurality of portions, each portion comprising one or more layers. The coating system includes an outer portion, which is an infrared radiation (IR) interaction portion, that dissipates incident (IR). Underlying this outer portion is a performance portion. The performance portion comprises at least one layer that includes microspheres. Between the substrate and performance portion is a compliance portion. The compliance portion comprises at least one layer of high temperature material that has a coefficient of thermal expansion (CTE) intermediate the performance layer and the substrate. The compliance portion thus reduces any high temperature thermal mismatch between the substrate and the performance portion.
    Type: Application
    Filed: December 31, 2007
    Publication date: July 2, 2009
    Applicant: General Electric Company
    Inventors: Daniel P. Ivkovich, William Randolph Stowell, Darrell Senile, Thomas W. Rentz, John F. Ackerman
  • Patent number: 7510668
    Abstract: Methods are provided for producing large volumes of small antenna arrays. In one embodiment, the method comprises the steps of creating an antenna array pattern as a computer file, printing the created pattern onto the surface of a suitable transfer paper, placing the printed image surface in contact with the surface of a material to be etched, and transferring the printed image to the surface of the material to be etched. The transfer can be effected by any combination of chemicals, heat, and/or pressure. After transfer of the printed image, the transfer paper is removed. The step of removing the transfer paper optionally includes wetting the transfer paper in a manner that dissolves the transfer paper leaving the printed antenna pattern on the surface of the material to be etched.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: March 31, 2009
    Assignee: General Electric Company
    Inventors: William Randolph Stowell, Michael R. Steele, Thomas Walter Rentz
  • Patent number: 7473331
    Abstract: An optical coating is applied to an article surface of an article by applying a first release system to a deposition substrate, and depositing the optical coating onto the deposition substrate. A second release system and transfer substrate is applied to the second face of the optical coating. The first release system is dissolvable in a first-release-coating solvent that does not dissolve the second release system. The first release system is dissolved in the first-release-coating solvent that does not dissolve the second release system, to separate the optical coating from the deposition substrate. The first face of the optical coating is affixed to the article surface, and the transfer substrate is separated from the optical coating. Any of a variety of affixing techniques may be used.
    Type: Grant
    Filed: October 8, 2003
    Date of Patent: January 6, 2009
    Assignee: General Electric Company
    Inventors: Daniel Peter Ivkovich, Jr., Andrew Jay Skoog, Jane Ann Murphy, Thomas Walter Rentz, William Randolph Stowell, Bryan Thomas Bojanowski
  • Patent number: 7368164
    Abstract: A coating and method for overcoating a TBC on a component used in a high-temperature environment, such as the combustor section of an industrial gas turbine. The coating defines the outermost surface of the component and is formed of at least two layers having different compositions. An inner layer of the coating contains alumina in a first silica-containing matrix material that is free of zinc titanate. An outer layer of the coating contains alumina, a glass material, and zinc titanate in a second silica-containing matrix material. The outer layer of the coating has a surface roughness of not greater than three micrometers Ra and forms the outermost surface of the component. The coating reduces the component temperature by reducing the convective and radiant heat transfer thereto.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: May 6, 2008
    Assignee: General Electric Company
    Inventors: William Randolph Stowell, Daniel Peter Ivkovich, Timothy Lance Manning, Tara Easter McGovern, Jane Ann Murphy, Thomas Walter Rentz, Mathew Curtis Roling, Raymond Grant Rowe, Andrew Jay Skoog
  • Patent number: 7311979
    Abstract: A coating system and method for reducing the tendency for hydrocarbon fluids, such as fuels and oils, to form carbonaceous deposits that adhere to a wall of a containment article. Of particular concern are carbonaceous deposits that form at temperatures below about 650° F. (about 345° C.). The coating system combines an outermost layer of platinum with a ceramic barrier layer. The coating system significantly reduces the formation of carbonaceous deposits and the adhesion of such deposits. To further reduce wall and hydrocarbon fluid temperatures and formation of carbonaceous deposits, the coating system is preferably applied to the surface of the wall wetted by the fluid, as well as the opposite surface of the wall exposed to a surrounding environment. The outermost layers serve as radiation shields to reduce heat transfer from the surrounding environment to the wall, and from the wall to the hydrocarbon fluid.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: December 25, 2007
    Assignee: General Electric Company
    Inventors: Alfred Albert Mancini, John Frederick Ackerman, Kevin Richard Leamy, William Randolph Stowell
  • Publication number: 20070134408
    Abstract: A chemical composition and method for repairing a thermal barrier coating on a component designed for use in a hostile thermal environment, such as turbine, combustor and augmentor components of a gas turbine engine. The method repairs a thermal barrier coating on a component that has suffered localized damage to the thermal barrier coating. After cleaning the surface area of the component exposed by the localized spallation, a paste-like mixture of a ceramic composition comprising ceramic powders and nano-sized ceramic materials in a binder, further including an accelerant, is applied to the surface area of the component, and is optionally smoothed using mechanical means. The composition is then allowed to dry and cure to form a dried coating having polymeric characteristics. Upon subsequent heating, the dried coating reacts to produce a glassy ceramic repair coating.
    Type: Application
    Filed: June 29, 2005
    Publication date: June 14, 2007
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Andrew Jay Skoog, Jane Ann Murphy, William Randolph Stowell, David E. Caldwell
  • Patent number: 6933066
    Abstract: A thermal barrier coating for an underlying metal substrate of articles that operate at, or are exposed to, high temperatures, as well as being exposed to environmental contaminant compositions. This coating includes an inner layer nearest to the underlying metal substrate comprising a ceramic thermal barrier coating material, as well as an outer layer having an exposed surface and comprising tantalum oxide in an amount sufficient to protect the thermal barrier coating at least partially against environmental contaminants that become deposited on the exposed surface and optionally an intermediate layer between the inner and outer layers comprising alumina. This coating can be used to provide a thermally protected article having a metal substrate and optionally a bond coat layer adjacent to and overlaying the metal substrate.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: August 23, 2005
    Assignee: General Electric Company
    Inventors: Bangalore Aswatha Nagaraj, John Frederick Ackerman, William Randolph Stowell, Ching-Pang Lee
  • Patent number: 6827969
    Abstract: A chemical composition and method for repairing a thermal barrier coating on a component designed for use in a hostile thermal environment, such as turbine, combustor and augmentor components of a gas turbine engine. The method repairs a thermal barrier coating on a component that has suffered localized damage to the thermal barrier coating. After cleaning the surface area of the component exposed by the localized spallation, a mixture of a ceramic composition comprising a ceramic powder in a binder is applied, preferably by spraying, to the surface area of the component. The binder is then allowed to dry to form a dried coating. Upon subsequent heating, the dried coating reacts to produce a ceramic-containing repair coating, wherein the coating comprises the ceramic powder in a matrix of a material formed when the binder was reacted. The binder is preferably a ceramic precursor material that can be converted immediately to a ceramic or allowed to thermally decompose over time to form a ceramic.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: December 7, 2004
    Assignee: General Electric Company
    Inventors: Andrew Jay Skoog, Jane Ann Murphy, William Randolph Stowell, Timothy Ray Lattire
  • Patent number: 6808816
    Abstract: A coating system and method for reducing the tendency for hydrocarbon fluids, such as fuels and oils, to form carbonaceous deposits that adhere to the walls of a containment article. Of particular concern are carbonaceous deposits that form at temperatures below about 650° F. (about 345° C.). The coating system combines an outermost layer of platinum with a ceramic barrier layer. The coating system has been shown to significantly reduce the formation of carbonaceous deposits at temperatures between about 220° F. and 650° F. (about 105° C. to about 345° C.), as well as reduce the adhesion of such deposits. The platinum outermost layer also serves as a radiation shield to reduce heat transfer from the containment article to the hydrocarbon fluid. The outermost layer is preferably deposited as an extremely thin film by chemical vapor deposition. The barrier layer is deposited to a thickness sufficient to prevent interdiffusion of the platinum outermost layer with the containment wall.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: October 26, 2004
    Assignee: General Electric Company
    Inventors: Alfred Albert Mancini, John Frederick Ackerman, Kevin Richard Leamy, William Randolph Stowell
  • Patent number: 6751943
    Abstract: Flow control in pulse detonation engines is accomplished using magnetohydrodynamic principles. The pulse detonation engine includes a tube having an open forward end and an open aft end and a fuel-air inlet formed in the tube at the forward end. An igniter is disposed in the tube at a location intermediate the forward end and the aft end. A magnetohydrodynamic flow control system is located between the igniter and the fuel-air inlet for controlling detonation in the tube forward of the igniter. The magnetohydrodynamic flow control system utilizes magnetic and electric fields forward of the igniter to dissipate or at least reduce the ignition potential of the forward traveling detonation flame front.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: June 22, 2004
    Assignee: General Electric Company
    Inventors: Gregory Vincent Meholic, William Randolph Stowell
  • Publication number: 20040115410
    Abstract: A thermal barrier coating for an underlying metal substrate of articles that operate at, or are exposed to, high temperatures, as well as being exposed to environmental contaminant compositions. This coating includes an inner layer nearest to the underlying metal substrate comprising a ceramic thermal barrier coating material, as well as an outer layer having an exposed surface and comprising tantalum oxide in an amount sufficient to protect the thermal barrier coating at least partially against environmental contaminants that become deposited on the exposed surface and optionally an intermediate layer between the inner and outer layers comprising alumina. This coating can be used to provide a thermally protected article having a metal substrate and optionally a bond coat layer adjacent to and overlaying the metal substrate.
    Type: Application
    Filed: December 12, 2002
    Publication date: June 17, 2004
    Inventors: Bangalore Aswatha Nagaraj, John Frederick Ackerman, William Randolph Stowell, Ching-Pang Lee
  • Publication number: 20040053024
    Abstract: A coating system and method for reducing the tendency for hydrocarbon fluids, such as fuels and oils, to form carbonaceous deposits that adhere to the walls of a containment article. Of particular concern are carbonaceous deposits that form at temperatures below about 650° F. (about 345° C.). The coating system combines an outermost layer of platinum with a ceramic barrier layer. The coating system has been shown to significantly reduce the formation of carbonaceous deposits at temperatures between about 220° F. and 650° F. (about 105° C. to about 345° C.), as well as reduce the adhesion of such deposits. The platinum outermost layer also serves as a radiation shield to reduce heat transfer from the containment article to the hydrocarbon fluid. The outermost layer is preferably deposited as an extremely thin film by chemical vapor deposition. The barrier layer is deposited to a thickness sufficient to prevent interdiffusion of the platinum outermost layer with the containment wall.
    Type: Application
    Filed: September 13, 2002
    Publication date: March 18, 2004
    Applicant: General Electric Company
    Inventors: Alfred Albert Mancini, John Frederick Ackerman, Kevin Richard Leamy, William Randolph Stowell
  • Publication number: 20040028816
    Abstract: A gas turbine engine wash process that facilitates reducing a formation of particulate matter within a gas turbine engine is described. The engine wash process includes injecting a first liquid into the engine to remove particulate matter formed within the engine and adversely affecting engine operation and performance. A second liquid is then injected into the engine to facilitate reducing a rate of formation of particulate matter within the gas turbine engine as the engine is operated in the future. More specifically, the second liquid is an anti-static liquid that coats compressor blades within the gas turbine engine.
    Type: Application
    Filed: August 1, 2003
    Publication date: February 12, 2004
    Inventors: John Frederick Ackerman, William Randolph Stowell, Robert Alan Johnson