Patents by Inventor William Richard Nicholas Birch

William Richard Nicholas Birch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210380936
    Abstract: The present invention refers to a method of manufacturing an implantable construct comprising chondrogenically differentiated cells and one or more polycaprolactone (PCL) microcarriers, an implantable construct produced using said method, and uses of the implantable construct. The present invention also refers to a method of manufacturing an implantable construct comprising mesenchymal stromal cells and one or more polycaprolactone (PCL) microcarriers, an implantable construct produced using said method, and uses of the implantable construct. The present invention further refers to a method of treating a disease or disorder associated with cartilage and/or bone defect, the method comprises administering one or more cell-free polycaprolactone (PCL) microcarriers in a patient suffering from the disease or disorder.
    Type: Application
    Filed: October 23, 2019
    Publication date: December 9, 2021
    Inventors: Youshan Melissa Lin, Steve Kah Weng Oh, Shaul Reuveny, William Richard Nicholas Birch, Jian Li, Asha Shekaran, Tin Lun Alan Lam
  • Publication number: 20210024883
    Abstract: The present disclosure relates to emulsions, methods of preparation thereof, and uses of said emulsions to fabricate porous polymeric microspheres as microcarriers for cell culture. In particular, the present disclosure relates to an emulsion with enhanced stability, characterized in that the emulsion comprises a) a water phase, the water phase is an aqueous solution comprising a salt; and b) an oil phase, the oil phase comprising a polymer; wherein the oil phase is immiscible with the water phase, and wherein the density differential of the water phase and oil phase is less than about 0.02 g/cm3. In a preferred embodiment, the polymer is polycaprolactone (PCL).
    Type: Application
    Filed: September 14, 2018
    Publication date: January 28, 2021
    Applicant: Agency for Science, Technology and Research
    Inventors: Jian Li, William Richard Nicholas Birch, Jessica Pei Wen Toh
  • Patent number: 9458431
    Abstract: We disclose a particle comprising a matrix coated thereon and having a positive charge, the particle being of a size to allow aggregation of primate or human stem cells attached thereto. The particle may comprise a substantially elongate, cylindrical or rod shaped particle having a longest dimension of between 50 ?m and 400 ?m, such as about 200 ?m. It may have a cross sectional dimension of between 20 ?m and 30 ?m. The particle may comprise a substantially compact or spherical shaped particle having a size of between about 20 ?m and about 120 ?m, for example about 65 ?m. We also disclose a method of propagating primate or human stem cells, the method comprising: providing first and second primate or human stem cells attached to first and second respective particles, allowing the first primate or human stem cell to contact the second primate or human stem cell to form an aggregate of cells and culturing the aggregate to propagate the primate or human stem cells for at least one passage.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: October 4, 2016
    Assignee: Agency for Science, Technology and Research
    Inventors: Steve Oh, Shaul Reuveny, Jian Li, William Richard Nicholas Birch
  • Publication number: 20140315300
    Abstract: We disclose a particle comprising a matrix coated thereon and having a positive charge, the particle being of a size to allow aggregation of primate or human stem cells attached thereto. The particle may comprise a substantially elongate, cylindrical or rod shaped particle having a longest dimension of between 50 ?m and 400 ?m, such as about 200 ?m. It may have a cross sectional dimension of between 20 ?m and 30 ?m. The particle may comprise a substantially compact or spherical shaped particle having a size of between about 20 ?m and about 120 ?m, for example about 65 ?m. We also disclose a method of propagating primate or human stem cells, the method comprising: providing first and second primate or human stem cells attached to first and second respective particles, allowing the first primate or human stem cell to contact the second primate or human stem cell to form an aggregate of cells and culturing the aggregate to propagate the primate or human stem cells for at least one passage.
    Type: Application
    Filed: October 29, 2013
    Publication date: October 23, 2014
    Applicant: Agency for Science, Technology and Research
    Inventors: Steve Oh, Shaul Reuveny, Jian Li, William Richard Nicholas Birch
  • Publication number: 20120028352
    Abstract: We disclose a particle comprising a matrix coated thereon and having a positive charge, the particle being of a size to allow aggregation of primate or human stem cells attached thereto. The particle may comprise a substantially elongate, cylindrical or rod shaped particle having a longest dimension of between 50 ?m and 400 ?m, such as about 200 ?m. It may have a cross sectional dimension of between 20 ?m and 30 ?m. The particle may comprise a substantially compact or spherical shaped particle having a size of between about 20 ?m and about 120 ?m, for example about 65 ?m. We also disclose a method of propagating primate or human stem cells, the method comprising: providing first and second primate or human stem cells attached to first and second respective particles, allowing the first primate or human stem cell to contact the second primate or human stem cell to form an aggregate of cells and culturing the aggregate to propagate the primate or human stem cells for at least one passage.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 2, 2012
    Applicant: AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Steve Oh, Shaul Reuveny, Allen Chen, William Richard Nicholas Birch