Patents by Inventor William Ryan Sillers

William Ryan Sillers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11873520
    Abstract: The present invention provides for novel metabolic pathways to convert biomass and other carbohydrate sources to malonyl-CoA derived products, such as hydrocarbons and other bioproducts, under anaerobic conditions and with the net production of ATP. More specifically, the invention provides for a recombinant microorganism comprising one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to achieve conversion of a carbohydrate source to, e.g., long-chain hydrocarbons and hydrocarbon derivatives, wherein the one or more native and/or heterologous enzymes is activated, upregulated, downregulated, or deleted. The invention also provides for processes to convert biomass to malonyl-CoA derived products which comprise contacting a carbohydrate source with a recombinant microorganism of the invention.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: January 16, 2024
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: William Ryan Sillers, Shital A. Tripathi, Arthur J. Shaw, IV, Aaron Argyros, David A. Hogsett
  • Patent number: 11634735
    Abstract: The present invention provides for novel metabolic pathways leading to propanol, alcohol or polyol formation in a consolidated bioprocessing system (CBP), where lignocellulosic biomass is efficiently converted to such products. More specifically, the invention provides for a recombinant microorganism, where the microorganism expresses one or more native and/or heterologous enzymes; where the one or more enzymes function in one or more engineered metabolic pathways to achieve: (1) conversion of a carbohydrate source to 1,2-propanediol, isopropropanol, ethanol and/or glycerol; (2) conversion of a carbohydrate source to n-propanol and isopropanol; (3) conversion of a carbohydrate source to isopropanol and methanol; or (4) conversion of a carbohydrate source to propanediol and acetone; wherein the one or more native and/or heterologous enzymes is activated, upregulated or downregulated.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: April 25, 2023
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: John E. McBride, Vineet Rajgarhia, Arthur J. Shaw, IV, Shital A. Tripathi, Elena Brevnova, Nicky Caiazza, Johannes Pieter Van Dijken, Allan C. Froehlich, William Ryan Sillers, James H. Flatt
  • Publication number: 20220267816
    Abstract: The present invention provides for novel metabolic pathways to convert biomass and other carbohydrate sources to malonyl-CoA derived products, such as hydrocarbons and other bioproducts, under anaerobic conditions and with the net production of ATP. More specifically, the invention provides for a recombinant microorganism comprising one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to achieve conversion of a carbohydrate source to, e.g., long-chain hydrocarbons and hydrocarbon derivatives, wherein the one or more native and/or heterologous enzymes is activated, upregulated, downregulated, or deleted. The invention also provides for processes to convert biomass to malonyl-CoA derived products which comprise contacting a carbohydrate source with a recombinant microorganism of the invention.
    Type: Application
    Filed: September 30, 2021
    Publication date: August 25, 2022
    Inventors: William Ryan Sillers, Shital A. Tripathi, Arthur J. Shaw, IV, Aaron Argyros, David A. Hogsett
  • Publication number: 20220098600
    Abstract: The present invention provides for novel metabolic pathways to reduce or eliminate glycerol production and increase product formation. More specifically, the invention provides for a recombinant microorganism comprising a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis and one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to convert a carbohydrate source, such as lignocellulose, to a product, such as ethanol, wherein the one or more native and/or heterologous enzymes is activated, upregulated, or downregulated.
    Type: Application
    Filed: May 10, 2021
    Publication date: March 31, 2022
    Inventors: Aaron Argyros, William Ryan Sillers, Trisha Barrett, Nicky Caiazza, Arthur J. Shaw, IV
  • Patent number: 11162125
    Abstract: The present invention provides for novel metabolic pathways to convert biomass and other carbohydrate sources to malonyl-CoA derived products, such as hydrocarbons and other bioproducts, under anaerobic conditions and with the net production of ATP. More specifically, the invention provides for a recombinant microorganism comprising one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to achieve conversion of a carbohydrate source to, e.g., long-chain hydrocarbons and hydrocarbon derivatives, wherein the one or more native and/or heterologous enzymes is activated, upregulated, downregulated, or deleted. The invention also provides for processes to convert biomass to malonyl-CoA derived products which comprise contacting a carbohydrate source with a recombinant microorganism of the invention.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: November 2, 2021
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: William Ryan Sillers, Shital A. Tripathi, Arthur J. Shaw, IV, Aaron Argyros, David A. Hogsett
  • Patent number: 11034967
    Abstract: The present invention provides for novel metabolic pathways to reduce or eliminate glycerol production and increase product formation. More specifically, the invention provides for a recombinant microorganism comprising a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis and one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to convert a carbohydrate source, such as lignocellulose, to a product, such as ethanol, wherein the one or more native and/or heterologous enzymes is activated, upregulated, or downregulated.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: June 15, 2021
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: Aaron Argyros, William Ryan Sillers, Trisha Barrett, Nicky Caiazza, Arthur J. Shaw, IV
  • Publication number: 20200325500
    Abstract: The present invention provides for novel metabolic pathways leading to propanol, alcohol or polyol formation in a consolidated bioprocessing system (CBP), where lignocellulosic biomass is efficiently converted to such products. More specifically, the invention provides for a recombinant microorganism, where the microorganism expresses one or more native and/or heterologous enzymes; where the one or more enzymes function in one or more engineered metabolic pathways to achieve: (1) conversion of a carbohydrate source to 1,2-propanediol, isopropropanol, ethanol and/or glycerol; (2) conversion of a carbohydrate source to n-propanol and isopropanol; (3) conversion of a carbohydrate source to isopropanol and methanol; or (4) conversion of a carbohydrate source to propanediol and acetone; wherein the one or more native and/or heterologous enzymes is activated, upregulated or downregulated.
    Type: Application
    Filed: July 1, 2020
    Publication date: October 15, 2020
    Inventors: John E. McBride, Vineet Rajgarhia, Arthur J. Shaw, IV, Shital A. Tripathi, Elena Brevnova, Nicky Caiazza, Johannes Pieter Van Dijken, Allan C. Froehlich, William Ryan Sillers, James H. Flatt
  • Publication number: 20200270657
    Abstract: The present invention provides for novel metabolic pathways to convert biomass and other carbohydrate sources to malonyl-CoA derived products, such as hydrocarbons and other bioproducts, under anaerobic conditions and with the net production of ATP. More specifically, the invention provides for a recombinant microorganism comprising one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to achieve conversion of a carbohydrate source to, e.g., long-chain hydrocarbons and hydrocarbon derivatives, wherein the one or more native and/or heterologous enzymes is activated, upregulated, downregulated, or deleted. The invention also provides for processes to convert biomass to malonyl-CoA derived products which comprise contacting a carbohydrate source with a recombinant microorganism of the invention.
    Type: Application
    Filed: October 22, 2018
    Publication date: August 27, 2020
    Inventors: William Ryan Sillers, Shital A. Tripathi, Arthur J. Shaw, IV, Aaron Argyros, David A. Hogsett
  • Patent number: 10138504
    Abstract: The present invention provides for novel metabolic pathways to convert biomass and other carbohydrate sources to malonyl-CoA derived products, such as hydrocarbons and other bioproducts, under anaerobic conditions and with the net production of ATP. More specifically, the invention provides for a recombinant microorganism comprising one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to achieve conversion of a carbohydrate source to, e.g., long-chain hydrocarbons and hydrocarbon derivatives, wherein the one or more native and/or heterologous enzymes is activated, upregulated, downregulated, or deleted. The invention also provides for processes to convert biomass to malonyl-CoA derived products which comprise contacting a carbohydrate source with a recombinant microorganism of the invention.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: November 27, 2018
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: William Ryan Sillers, Shital A. Tripathi, Arthur J. Shaw, IV, Aaron Argyros, David A. Hogsett
  • Publication number: 20180208951
    Abstract: The present in provides for novel metabolic pathways leading to propanol, alcohol or polyol formation in a consolidated bioprocessing system (CBP), where lignocellulosic biomass is efficiently converted to such products. More specifically, the invention provides for a recombinant microorganism, where the microorganism expresses one or more native and/or heterologous enzymes; where the one or more enzymes function in one or more engineered metabolic pathways to achieve: (1) conversion of a carbohydrate source to 1,2-propanediol, isopropropanol, ethanol and/or glycerol; (2) conversion of a carbohydrate source to n-propanol and isopropanol; (3) conversion of a carbohydrate source to isopropanol and methanol; or (4) conversion of a carbohydrate source to propanediol and acetone; wherein the one or more native and/or heterologous enzymes is activated, upregulated or downregulated.
    Type: Application
    Filed: March 21, 2018
    Publication date: July 26, 2018
    Inventors: John E. McBride, Vineet Rajgarhia, Arthur J. Shaw, IV, Shital A. Tripathi, Elena Brevnova, Nicky Caiazza, Johannes Pieter Van Dijken, Allan C. Froehlich, William Ryan Sillers, James H. Flatt
  • Patent number: 9957530
    Abstract: The present invention provides for novel metabolic pathways leading to propanol, alcohol or polyol formation in a consolidated bioprocessing system (CBP), where lignocellulosic biomass is efficiently converted to such products. More specifically, the invention provides for a recombinant microorganism, where the microorganism expresses one or more native and/or heterologous enzymes; where the one or more enzymes function in one or more engineered metabolic pathways to achieve: (1) conversion of a carbohydrate source to 1,2-propanediol, isopropropanol, ethanol and/or glycerol; (2) conversion of a carbohydrate source to n-propanol and isopropanol; (3) conversion of a carbohydrate source to isopropanol and methanol; or (4) conversion of a carbohydrate source to propanediol and acetone; wherein the one or more native and/or heterologous enzymes is activated, upregulated or downregulated.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: May 1, 2018
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: John E. McBride, Vineet Rajgarhia, Arthur J. Shaw, IV, Shital A. Tripathi, Elena Brevnova, Nicky Caiazza, Johannes Pieter Van Dijken, Allan C. Froehlich, William Ryan Sillers, James H. Flatt
  • Publication number: 20170356000
    Abstract: The present invention provides for novel metabolic pathways to reduce or eliminate glycerol production and increase product formation. More specifically, the invention provides for a recombinant microorganism comprising a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis and one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to convert a carbohydrate source, such as lignocellulose, to a product, such as ethanol, wherein the one or more native and/or heterologous enzymes is activated, upregulated, or downregulated.
    Type: Application
    Filed: June 30, 2017
    Publication date: December 14, 2017
    Inventors: Aaron Argyros, William Ryan Sillers, Trisha Barrett, Nicky Caiazza, Arthur J. Shaw, IV
  • Patent number: 9719098
    Abstract: The present invention provides for novel metabolic pathways to reduce or eliminate glycerol production and increase product formation. More specifically, the invention provides for a recombinant microorganism comprising a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis and one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to convert a carbohydrate source, such as lignocellulose, to a product, such as ethanol, wherein the one or more native and/or heterologous enzymes is activated, upregulated, or downregulated.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: August 1, 2017
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: Aaron Argyros, William Ryan Sillers, Trisha Barrett, Nicky Caiazza, Arthur J. Shaw, IV
  • Patent number: 9605269
    Abstract: One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce lactate or acetate as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of lactate or acetate. Another aspect of the invention relates to a process for converting lignocellulosic biomass to lactate or acetate, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: March 28, 2017
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: William Ryan Sillers, Hans Van Dijken, Steve Licht, Arthur J. Shaw, IV, Alan Benjamin Gilbert, Aaron Argyros, Allan C. Froehlich, John E. McBride, Haowen Xu, David A. Hogsett, Vineet B. Rajgarhia
  • Publication number: 20150232863
    Abstract: The present invention provides for novel metabolic pathways to reduce or eliminate glycerol production and increase product formation. More specifically, the invention provides for a recombinant microorganism comprising a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis and one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to convert a carbohydrate source, such as lignocellulose, to a product, such as ethanol, wherein the one or more native and/or heterologous enzymes is activated, upregulated, or downregulated.
    Type: Application
    Filed: February 17, 2015
    Publication date: August 20, 2015
    Inventors: Aaron Argyros, William Ryan Sillers, Trisha Barrett, Nicky Caiazza, Arthur J. Shaw, IV
  • Patent number: 8956851
    Abstract: The present invention provides for novel metabolic pathways to reduce or eliminate glycerol production and increase product formation. More specifically, the invention provides for a recombinant microorganism comprising a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis and one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to convert a carbohydrate source, such as lignocellulose, to a product, such as ethanol, wherein the one or more native and/or heterologous enzymes is activated, upregulated, or downregulated.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: February 17, 2015
    Assignee: Lallemand Hungary Liquidity Management, LLC
    Inventors: Aaron Argyros, William Ryan Sillers, Trisha Barrett, Nicky Caiazza, Arthur J. Shaw, IV
  • Publication number: 20130323766
    Abstract: The present invention provides for novel metabolic pathways to convert biomass and other carbohydrate sources to malonyl-CoA derived products, such as hydrocarbons and other bioproducts, under anaerobic conditions and with the net production of ATP. More specifically, the invention provides for a recombinant microorganism comprising one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to achieve conversion of a carbohydrate source to, e.g., long-chain hydrocarbons and hydrocarbon derivatives, wherein the one or more native and/or heterologous enzymes is activated, upregulated, downregulated, or deleted. The invention also provides for processes to convert biomass to malonyl-CoA derived products which comprise contacting a carbohydrate source with a recombinant microorganism of the invention.
    Type: Application
    Filed: August 5, 2011
    Publication date: December 5, 2013
    Applicant: Mascoma Corporation
    Inventors: William Ryan Sillers, Shital A. Tripathi, Arthur J. Shaw, Aaron Argyros, David A. Hogsett
  • Publication number: 20130273555
    Abstract: One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce lactate or acetate as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of lactate or acetate. Another aspect of the invention relates to a process for converting lignocellulosic biomass to lactate or acetate, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.
    Type: Application
    Filed: May 5, 2011
    Publication date: October 17, 2013
    Applicant: Mascoma Corporation
    Inventors: William Ryan Sillers, Hans Van Dijken, Steve Licht, Arthur J. Shaw, IV, Alan Benjamin Gilbert, Aaron Argyros, Allan C. Froehlich, John E. McBride, Haowen Xu, David A. Hogsett, Vineet B. Rajgarhia
  • Publication number: 20120322078
    Abstract: The present invention provides for novel metabolic pathways leading to propanol, alcohol or polyol formation in a consolidated bioprocessing system (CBP), where lignocellulosic biomass is efficiently converted to such products. More specifically, the invention provides for a recombinant microorganism, where the microorganism expresses one or more native and/or heterologous enzymes; where the one or more enzymes function in one or more engineered metabolic pathways to achieve: (1) conversion of a carbohydrate source to 1,2-propanediol, isopropropanol, ethanol and/or glycerol; (2) conversion of a carbohydrate source to n-propanol and isopropanol; (3) conversion of a carbohydrate source to isopropanol and methanol; or (4) conversion of a carbohydrate source to propanediol and acetone; wherein the one or more native and/or heterologous enzymes is activated, up-regulated or down-regulated.
    Type: Application
    Filed: August 20, 2010
    Publication date: December 20, 2012
    Inventors: John E. Mcbride, Vineet Rajgarhia, Arthur J. Shaw, Shital A. Tripathi, Elena Brevnova, Nicky Caiazza, Johannes Pieter Van Dijken, Allan C. Froehlich, William Ryan Sillers, James H. Flatt