Patents by Inventor William S. Rollins

William S. Rollins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150336054
    Abstract: Process and apparatus for producing an oxygen product gas and a nitrogen product gas using ion transport membrane assemblies. The apparatus comprises at least two ion transport membrane assemblies and a turboexpander downstream of one of the ion transport membrane assemblies. In the process, an oxygen- and nitrogen-containing gas is introduced into a first of the ion transport membrane assemblies to produce oxygen-depleted gas and oxygen product gas. The oxygen-depleted gas is divided, with a first portion being expanded in the turboexpander and a second portion introduced into a second of the ion transport membrane assemblies. A nitrogen-rich product gas and additional oxygen product gas are withdrawn from the second ion transport membrane assembly.
    Type: Application
    Filed: February 27, 2014
    Publication date: November 26, 2015
    Inventors: William S. Rollins, VanEric Edward Stein
  • Publication number: 20100071381
    Abstract: A system and method for integrating gasification processes with membrane oxygen separation, advanced steam conditions, and effective heat recovery. Through the integration of synergistic technologies, a highly efficient Integrated Gasification Combined Cycle (IGCC) power plant can be constructed. A combined cycle power plant that includes substantial amounts of duct firing in its Heat Recovery Steam Generator (HRSG) can be used in conjunction with membrane oxygen separation to provide the necessary air heating to the range of 1470 to 1650° F. This high-end energy in the HRSG can also be utilized to create more steam at elevated conditions in the HRSG, and thus provide additional cold feedwater for cooling in the HRSG and for cooling in both the gasification and oxygen membrane separation processes. When CO2 release to atmosphere is to be minimized, the invention may utilize a synergistic hydrogen membrane separation technology.
    Type: Application
    Filed: July 27, 2007
    Publication date: March 25, 2010
    Inventor: William S. Rollins, III
  • Patent number: 7131259
    Abstract: A process for increasing the specific output of a combined cycle power plant and providing flexibility in the power plant rating, both without a commensurate increase in the plant heat rate, is disclosed. The present invention demonstrates that the process of upgrading thermal efficiencies of combined cycles can often be accomplished through the strategic use of additional fuel and/or heat input. In particular, gas turbines that exhaust into HRSGs, can be supplementally fired to obtain much higher steam turbine outputs and greater overall plant ratings, but without a penalty on efficiency. This method by and large defines a high efficiency combined cycle power plant that is predominantly a Rankine (bottoming) cycle. Exemplary embodiments of the present invention include a load driven by a topping cycle engine, powered by a topping cycle fluid which exhausts into a heat recovery device.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: November 7, 2006
    Inventor: William S. Rollins, III
  • Patent number: 6792759
    Abstract: A process for increasing the specific output of a combined cycle power plant and providing flexibility in the power plant rating, both without a commensurate increase in the plant heat rate, is disclosed. The present invention demonstrates that the process of upgrading thermal efficiencies of combined cycles can often be accomplished through the strategic use of additional fuel and/or heat input. In particular, gas turbines that exhaust into HRSGs, can be supplementally fired to obtain much higher steam turbine outputs and greater overall plant ratings, but without a penalty on efficiency. This method by and large defines a high efficiency combined cycle power plant that is predominantly a Rankine (bottoming) cycle. Exemplary embodiments of the present invention include a load driven by a topping cycle engine, powered by a topping cycle fluid which exhausts into a heat recovery device.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: September 21, 2004
    Inventor: William S. Rollins, III
  • Publication number: 20040031256
    Abstract: A process for increasing the specific output of a combined cycle power plant and providing flexibility in the power plant rating, both without a commensurate increase in the plant heat rate, is disclosed. The present invention demonstrates that the process of upgrading thermal efficiencies of combined cycles can often be accomplished through the strategic use of additional fuel and/or heat input. In particular, gas turbines that exhaust into HRSGs, can be supplementally fired to obtain much higher steam turbine outputs and greater overall plant ratings, but without a penalty on efficiency. This method by and large defines a high efficiency combined cycle power plant that is predominantly a Rankine (bottoming) cycle. Exemplary embodiments of the present invention include a load driven by a topping cycle engine, powered by a topping cycle fluid which exhausts into a heat recovery device.
    Type: Application
    Filed: August 18, 2003
    Publication date: February 19, 2004
    Inventor: William S. Rollins
  • Patent number: 6606848
    Abstract: A system and method for increasing the specific output of a combined cycle power plant and providing flexibility in the power plant rating, both without a commensurate increase in the plant heat rate, is disclosed. The present invention demonstrates that the process of upgrading thermal efficiencies of combined cycles can often be accomplished through the strategic use of additional fuel and/or heat input. In particular, gas turbines that exhaust into HRSGs can be supplemental fired to obtain much higher steam turbine outputs and greater overall plant ratings, but without a penalty on efficiency. This system and method by in large defines a high efficiency combined cycle power plant that is predominantly a Rankine (bottoming) cycle. Exemplary embodiments of the present invention include a load (1304) driven by a topping cycle engine (TCE) (1302), powered by a topping cycle fluid (TCF) (1301) that exhausts (1305) into a heat recovery device (HRD) (1306).
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: August 19, 2003
    Inventor: William S. Rollins, III
  • Publication number: 20030150215
    Abstract: A process for increasing the specific output of a combined cycle power plant and providing flexibility in the power plant rating, both without a commensurate increase in the plant heat rate, is disclosed. The present invention demonstrates that the process of upgrading thermal efficiencies of combined cycles can often be accomplished through the strategic use of additional fuel and/or heat input. In particular, gas turbines that exhaust into HRSGs, can be supplementally fired to obtain much higher steam turbine outputs and greater overall plant ratings, but without a penalty on efficiency. This method by and large defines a high efficiency combined cycle power plant that is predominantly a Rankine (bottoming) cycle. Exemplary embodiments of the present invention include a load driven by a topping cycle engine, powered by a topping cycle fluid which exhausts into a heat recovery device.
    Type: Application
    Filed: November 21, 2002
    Publication date: August 14, 2003
    Inventor: William S. Rollins,
  • Patent number: 6494045
    Abstract: A process for increasing the specific output of a combined cycle power plant and providing flexibility in the power plant rating, both without a commensurate increase in the plant heat rate, is disclosed. The present invention demonstrates that the process of upgrading thermal efficiencies of combined cycles can often be accomplished through the strategic use of additional fuel and/or heat input. In particular, gas turbines that exhaust into HRSGs, can be supplemental fired to obtain much higher steam turbine outputs and greater overall plant ratings, but without a penalty on efficiency. This method by and large defines a high efficiency combined cycle power plant that is predominantly a Rankine (bottoming) cycle. Exemplary embodiments of the present invention include a load driven by a topping cycle engine, powered by a topping cycle fluid which exhausts into a heat recovery device.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: December 17, 2002
    Inventor: William S. Rollins, III
  • Publication number: 20010023576
    Abstract: A process for increasing the specific output of a combined cycle power plant and providing flexibility in the power plant rating, both without a commensurate increase in the plant heat rate, is disclosed. The present invention demonstrates that the process of upgrading thermal efficiencies of combined cycles can often be accomplished through the strategic use of additional fuel and/or heat input. In particular, gas turbines that exhaust into HRSGs, can be supplemental fired to obtain much higher steam turbine outputs and greater overall plant ratings, but without a penalty on efficiency. This method by and large defines a high efficiency combined cycle power plant that is predominantly a Rankine (bottoming) cycle. Exemplary embodiments of the present invention include a load driven by a topping cycle engine, powered by a topping cycle fluid which exhausts into a heat recovery device.
    Type: Application
    Filed: February 14, 2001
    Publication date: September 27, 2001
    Inventor: William S. Rollins