Patents by Inventor William Shannan O'Shaughnessy

William Shannan O'Shaughnessy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10543516
    Abstract: Liquid-impregnated textured coatings containing one or more materials on a variety of surfaces are described herein. The coatings can be prepared by chemical vapor deposition techniques or other techniques known in the art. The texture can be random, fractal, or patterned. The texture can be pores, cavities, and/or micro- and/or nanoscale features/structures. The capillary forces arising from the nano- or microscopic texture of the coating stabilizes the liquid within the textured features and at the surface of the coating resulting in non-wetting properties for a variety of surfaces. They coatings may be formed in a single layer or as multiple layers. In order to maximize ease of deposition and processing, the coating may be formed of graded composition to optimize both bulk and surface properties without the need for multiple coatings.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: January 28, 2020
    Assignee: GVD Corporation
    Inventors: Aleksandr J. White, William Shannan O'Shaughnessy, Seth Johnson, Karen K. Gleason
  • Patent number: 9895470
    Abstract: Substrates, optionally coated with an undercoating layer, having grafted there from one or more non-fouling materials are described herein. The non-fouling, polymeric material can be grafted from a variety of substrate materials, particularly polymeric substrates and/or polymeric undercoating layers. The graft-from techniques described herein can result in higher surface densities of the non-fouling material relative to graft-to formulations. Graft-from methods can be used to produce covalently tethered polymers. The compositions described herein are highly resistant protein absorption, particularly in complex media and retain a high degree of non-fouling activity over long periods of time. The compositions described herein may also demonstrate antimicrobial and/or anti-thrombogenic activity.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: February 20, 2018
    Assignee: Semprus Biosciences Corp.
    Inventors: Jun Li, Trevor Squier, Zheng Zhang, Chad Huval, William Shannan O'Shaughnessy, Michael Hencke, Michael Bouchard, Christopher R. Loose
  • Publication number: 20160074915
    Abstract: Liquid-impregnated textured coatings containing one or more materials on a variety of surfaces are described herein. The coatings can be prepared by chemical vapor deposition techniques or other techniques known in the art. The texture can be random, fractal, or patterned. The texture can be pores, cavities, and/or micro- and/or nanoscale features/structures. The capillary forces arising from the nano- or microscopic texture of the coating stabilizes the liquid within the textured features and at the surface of the coating resulting in non-wetting properties for a variety of surfaces. They coatings may be formed in a single layer or as multiple layers. In order to maximize ease of deposition and processing, the coating may be formed of graded composition to optimize both bulk and surface properties without the need for multiple coatings.
    Type: Application
    Filed: April 29, 2014
    Publication date: March 17, 2016
    Inventors: Aleksandr J. White, William Shannan O'Shaughnessy, Seth Johnson, Karen K. Gleason
  • Publication number: 20100152708
    Abstract: Substrates, optionally coated with an undercoating layer, having grafted there from one or more non-fouling materials are described herein. The non-fouling, polymeric material can be grafted from a variety of substrate materials, particularly polymeric substrates and/or polymeric undercoating layers. The graft-from techniques described herein can result in higher surface densities of the non-fouling material relative to graft-to formulations. Graft-from methods can be used to produce covalently tethered polymers. The compositions described herein are highly resistant protein absorption, particularly in complex media and retain a high degree of non-fouling activity over long periods of time. The compositions described herein may also demonstrate antimicrobial and/or anti-thrombogenic activity.
    Type: Application
    Filed: December 7, 2009
    Publication date: June 17, 2010
    Inventors: Jun Li, Trevor Squier, Zheng Zhang, Chad Huval, William Shannan O'Shaughnessy, Michael Hencke, Michael Bouchard, Christopher R. Loose