Patents by Inventor William Stratford Layman

William Stratford Layman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10010433
    Abstract: A prosthetic limb and process to digitally construct a prosthetic limb which includes first, digitally producing a modified mold of a residual limb via 3d scanners and software known to the industry; constructing a test socket from the digitally modified mold and be equipped with an alignable system; for example, a pylon, along with the desired prosthetic foot; accurately scanning the test socket, preferably with a 3D scanner, along with finalized alignment that has been recorded and adjusted by a certified practitioner to provide a 3-D Image of the finalized prosthetic alignment; transferring the finalized digital alignment of the test socket to the finalized digitally modified mold; once the modified model has received the transferred alignment, fabricating the type of hookup in the socket; i.e.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: July 3, 2018
    Inventors: William Stratford Layman, W. Brian Layman
  • Patent number: 9480581
    Abstract: A prosthetic limb and process to digitally construct a prosthetic limb which includes first, digitally producing a modified mold of a residual limb via 3d scanners and software; constructing a test socket from the digitally modified mold and be equipped with an alignable system; accurately scanning the test socket, along with finalized alignment that has been recorded and adjusted by a certified practitioner to provide a 3-D Image of the finalized prosthetic alignment; transferring the finalized digital alignment of the test socket to the finalized digitally modified mold; once the modified model has received the transferred alignment, fabricating the type of hookup in the socket; i.e., plug fit, four hole, support drop lock, or any other type of industry standard connection or accommodation via basic 3D software; and once the desired prosthetic attachment is finalized, sending finished file to a 3-D printer to produce the definitive prosthetic device.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: November 1, 2016
    Inventors: William Stratford Layman, W. Brian Layman
  • Publication number: 20150142150
    Abstract: A prosthetic limb and process to digitally construct a prosthetic limb which includes first, digitally producing a modified mold of a residual limb via 3d scanners and software known to the industry; constructing a test socket from the digitally modified mold and be equipped with an alignable system; for example, a pylon, along with the desired prosthetic foot; accurately scanning the test socket, preferably with a 3D scanner, along with finalized alignment that has been recorded and adjusted by a certified practitioner to provide a 3-D Image of the finalized prosthetic alignment; transferring the finalized digital alignment of the test socket to the finalized digitally modified mold; once the modified model has received the transferred alignment, fabricating the type of hookup in the socket; i.e.
    Type: Application
    Filed: June 25, 2014
    Publication date: May 21, 2015
    Inventors: W. Brian Layman, William Stratford Layman
  • Publication number: 20140188260
    Abstract: A prosthetic limb and process to digitally construct a prosthetic limb which includes first, digitally producing a modified mold of a residual limb via 3d scanners and software; constructing a test socket from the digitally modified mold and be equipped with an alignable system; accurately scanning the test socket, along with finalized alignment that has been recorded and adjusted by a certified practitioner to provide a 3-D Image of the finalized prosthetic alignment; transferring the finalized digital alignment of the test socket to the finalized digitally modified mold; once the modified model has received the transferred alignment, fabricating the type of hookup in the socket; i.e., plug fit, four hole, support drop lock, or any other type of industry standard connection or accommodation via basic 3D software; and once the desired prosthetic attachment is finalized, sending finished file to a 3-D printer to produce the definitive prosthetic device.
    Type: Application
    Filed: July 23, 2013
    Publication date: July 3, 2014
    Inventors: W. Brian Layman, William Stratford Layman