Patents by Inventor William Sweat

William Sweat has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10166322
    Abstract: Embodiments are described for receiving first data related to an amount of a first component in a multi-component liquid. A gain may be determined based on the first data. The multi-component liquid may be separated into at least two components. The gain may then be used to control a position of an interface between two separated components of the multi-component liquid, such as by using the gain in changing a speed of a pump pumping at least one of the components.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: January 1, 2019
    Assignee: Terumo BCT, Inc.
    Inventors: William Sweat, Christopher Corey Howells
  • Patent number: 10112002
    Abstract: A method is provided in a centrifugal blood processing system for adding replacement fluid without a dedicated peristaltic pump to blood components being returned to the donor. A disposable blood processing set for use in the method comprises a hermetically sealed set of blood bags, connecting tubes, needles or connectors, and supporting structures with a replacement fluid line coupled directly to a return reservoir without contact with an intervening pump.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: October 30, 2018
    Assignee: Terumo BCT, Inc.
    Inventors: John R. Linder, William Sweat
  • Publication number: 20160058938
    Abstract: A method is provided in a centrifugal blood processing system for adding replacement fluid without a dedicated peristaltic pump to blood components being returned to the donor. A disposable blood processing set for use in the method comprises a hermetically sealed set of blood bags, connecting tubes, needles or connectors, and supporting structures with a replacement fluid line coupled directly to a return reservoir without contact with an intervening pump.
    Type: Application
    Filed: October 8, 2015
    Publication date: March 3, 2016
    Applicant: TERUMO BCT, INC.
    Inventors: John R. LINDNER, William SWEAT
  • Patent number: 9173990
    Abstract: A method is provided in a centrifugal blood processing system for adding replacement fluid without a dedicated peristaltic pump to blood components being returned to the donor. A disposable blood processing set for use in the method comprises a hermetically sealed set of blood bags, connecting tubes, needles or connectors, and supporting structures with a replacement fluid line coupled directly to a return reservoir without contact with an intervening pump.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: November 3, 2015
    Assignee: Terumo BCT, Inc.
    Inventors: John R. Lindner, William Sweat
  • Publication number: 20150273128
    Abstract: Embodiments are described for receiving first data related to an amount of a first component in a multi-component liquid. A gain may be determined based on the first data. The multi-component liquid may be separated into at least two components. The gain may then be used to control a position of an interface between two separated components of the multi-component liquid, such as by using the gain in changing a speed of a pump pumping at least one of the components.
    Type: Application
    Filed: March 27, 2015
    Publication date: October 1, 2015
    Applicant: TERUMO BCT, INC.
    Inventors: William SWEAT, Christopher Corey HOWELLS
  • Patent number: 8501015
    Abstract: A centrifuge for separating blood having a camera observing fluid flow, and a controller controlling the flow. The location of an interface is detected by image processing steps, which may comprise the steps of “spoiling” the image, “diffusing” the image, “edge detection”, “edge linking”, “region-based confirmation”, and “interface calculation”. “Spoiling” reduces the number of pixels to be examined preferentially on orthogonal axis oriented with respect to the expected location of the interface or phase boundary. “Diffusing” smoothes out small oscillations in the interface boundary, making the location of the interface more distinct. “Edge detection” computes the rate of change in pixel intensity. “Edge linking” connects adjacent maxima. “Region-based confirmation” creates a pseudo image of the regions that qualify as distinct. “Final edge calculation” uses the points where the shade changes in the pseudo image, averages the radial displacement of these points for the interface position.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: August 6, 2013
    Assignee: Terumo BCT, Inc.
    Inventors: Christopher Fletcher, William Sweat, Jeremy Kolenbrander, Aditya Dalvi, John R. Linder
  • Patent number: 8449439
    Abstract: A centrifuge for separating blood having a camera observing fluid flow, and a controller controlling the flow. The location of an interface is detected by image processing steps, which may comprise the steps of “spoiling” the image, “diffusing” the image, “edge detection”, “edge linking”, “region-based confirmation”, and “interface calculation”. “Spoiling” reduces the number of pixels to be examined preferentially on orthogonal axis oriented with respect to the expected location of the interface or phase boundary. “Diffusing” smoothes out small oscillations in the interface boundary, making to the location of the interface more distinct. “Edge detection” computes the rate of change in pixel intensity. “Edge linking” connects adjacent maxima. “Region-based confirmation” creates a pseudo image of the regions that qualify as distinct. “Final edge calculation” uses the points where the shade changes in the pseudo image, averages the radial displacement of these points for the interface position.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: May 28, 2013
    Assignee: Terumo BCT, Inc.
    Inventors: Christopher Fletcher, William Sweat, Jeremy P. Kolenbrander, Aditya Dalvi, John R. Lindner
  • Publication number: 20130040797
    Abstract: A method is provided in a centrifugal blood processing system for adding replacement fluid without a dedicated peristaltic pump to blood components being returned to the donor. A disposable blood processing set for use in the method comprises a hermetically sealed set of blood bags, connecting tubes, needles or connectors, and supporting structures with a replacement fluid line coupled directly to a return reservoir without contact with an intervening pump.
    Type: Application
    Filed: August 8, 2012
    Publication date: February 14, 2013
    Applicant: Terumo BCT, Inc.
    Inventors: John R. LINDNER, William SWEAT
  • Patent number: 8337379
    Abstract: A centrifuge for separating blood having a camera observing fluid flow, and a controller controlling the flow. The location of an interface is detected by image processing steps, which may comprise the steps of “spoiling” the image, “diffusing” the image, “edge detection”, “edge linking”, “region-based confirmation”, and “interface calculation”. “Spoiling” reduces the number of pixels to be examined preferentially on orthogonal axis oriented with respect to the expected location of the interface or phase boundary. “Diffusing” smoothes out small oscillations in the interface boundary, making the location of the interface more distinct. “Edge detection” computes the rate of change in pixel intensity, or. “Edge linking” connects adjacent maxima. “Region-based confirmation” creates a pseudo image of the regions that qualify as distinct. “Final edge calculation” uses the points where the shade changes in the pseudo image, averages the radial displacement of these points for the interface position.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: December 25, 2012
    Assignee: Terumo BCT, Inc.
    Inventors: Christopher Fletcher, William Sweat, Jeremy Kolenbrander, Aditya Dalvi, John R. Linder
  • Patent number: 8070663
    Abstract: A density centrifuge blood processing system with automatic two-dimensional optical control of fluid separation by observing fluid characteristics in observation regions. The location of the regions is determined by monitoring an optical reference. Points representing edges of an optical reference are measured and lines are computed through the points. An error measurement is calculated for each line. If the error is too large, the image is abandoned. One of the lines is selected as a referent line. A new line is calculated orthogonal to the referent line. The error function is again computed for the dependant line. If the error exceeds a selected maximum, the frame is discarded. A transformation function translates data points from an (r, s) domain derived from measurements of the edges into an (x, y) domain used to identify pixels in the observation areas.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: December 6, 2011
    Assignee: CaridianBCT, Inc.
    Inventor: William Sweat
  • Patent number: 8066888
    Abstract: A blood cell collection system having means for detecting when a cell separation chamber has filled with white blood cells, and flushing the cells out of the cell separation chamber into a collect bag. A red-green sensor senses the optical characteristics of fluid leaving the cell separation chamber. A baseline value is calculated. The device calculates a ratio of the intensities of red light and green light and a peak-to-peak ratio of intensities. If either ratio exceeds thresholds computed from the baseline, the device flushes the cells into the collect bag. A camera detects white cells passing into the cell separation chamber and the device calculates the number of cells being collected. If the calculated number of collected cells exceeds a certain limit, the cell separation chamber is flushed. If the device is unable to establish a baseline, the donation can proceed, relying solely on the calculated number of collected cells.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: November 29, 2011
    Assignee: CaridianBCT, Inc.
    Inventors: William Sweat, Jeremy Kolenbrander, John R. Lindner, Jennifer Hinz
  • Patent number: 8062202
    Abstract: A density centrifuge blood processing system comprising a separation chamber rotating about a central rotation axis, the separation chamber being coupled to an elutriation chamber, a first detector for the separation chamber to detect light from an observation region, a computational apparatus distinguishing at least two regions in the observation region and distinguishing incipient spill over of cellular components out of the elutriation chamber as a function of light intensity received from the at least two regions in the separation chamber, and a controller regulating speed of at least one pump or of the separation chamber in response to signals from the computational apparatus to avoid spill over.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: November 22, 2011
    Assignee: CaridianBCT, Inc.
    Inventor: William Sweat
  • Publication number: 20110269614
    Abstract: A density centrifuge blood processing system comprising a separation chamber rotating about a central rotation axis, the separation chamber having an outflow passage, a light source in optical communication with the density centrifuge blood processing system, the light source providing an incident light beam for illuminating an observation region and a viewing region on the outflow passage, a first detector for the separation chamber to detect light from the observation region, a second detector for the outflow passage, a computational apparatus distinguishing one or more phase boundaries in the observation region and distinguishing fluid composition in the viewing region as a function of light intensity received from the viewing region, and a controller regulating speed of at least one pump or of said separation chamber in response to signals from the computational apparatus.
    Type: Application
    Filed: November 2, 2010
    Publication date: November 3, 2011
    Applicant: CARIDIANBCT, INC.
    Inventors: John R. LINDNER, Jeremy KOLENBRANDER, William SWEAT
  • Publication number: 20110201487
    Abstract: A density centrifuge blood processing system with automatic two-dimensional optical control of fluid separation by observing fluid characteristics in observation regions. The location of the regions is determined by monitoring an optical reference. Points representing edges of an optical reference are measured and lines are computed through the points. An error measurement is calculated for each line. If the error is too large, the image is abandoned. One of the lines is selected as a referent line. A new line is calculated orthogonal to the referent line. The error function is again computed for the dependant line. If the error exceeds a selected maximum, the frame is discarded. A transformation function translates data points from an (r, s) domain derived from measurements of the edges into an (x, y) domain used to identify pixels in the observation areas.
    Type: Application
    Filed: April 22, 2011
    Publication date: August 18, 2011
    Applicant: CARIDIANBCT, INC.
    Inventor: William SWEAT
  • Patent number: 7951059
    Abstract: A density centrifuge blood processing system with automatic two-dimensional optical control of fluid separation by observing fluid characteristics in observation regions. The location of the regions is determined by monitoring an optical reference. Points representing edges of an optical reference are measured and lines are computed through the points. An error measurement is calculated for each line. If the error is too large, the image is abandoned. One of the lines is selected as a referent line. A new line is calculated orthogonal to the referent line. The error function is again computed for the dependant line. If the error exceeds a selected maximum, the frame is discarded. A transformation function translates data points from an (r, s) domain derived from measurements of the edges into an (x, y) domain used to identify pixels in the observation areas.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: May 31, 2011
    Assignee: CaridianBCT, Inc.
    Inventor: William Sweat
  • Publication number: 20110021333
    Abstract: A density centrifuge blood processing system comprising a separation chamber rotating about a central rotation axis, the separation chamber being coupled to an elutriation chamber, a first detector for the separation chamber to detect light from an observation region, a computational apparatus distinguishing at least two regions in the observation region and distinguishing incipient spill over of cellular components out of the elutriation chamber as a function of light intensity received from the at least two regions in the separation chamber, and a controller regulating speed of at least one pump or of the separation chamber in response to signals from the computational apparatus to avoid spill over.
    Type: Application
    Filed: October 7, 2010
    Publication date: January 27, 2011
    Applicant: CARIDIANBCT, INC.
    Inventor: William SWEAT
  • Patent number: 7828709
    Abstract: A density centrifuge blood processing system comprising a separation chamber rotating about a central rotation axis, the separation chamber being coupled to an elutriation chamber, a first detector for the separation chamber to detect light from an observation region, a computational apparatus distinguishing at least two regions in the observation region and distinguishing incipient spill over of cellular components out of the elutriation chamber as a function of light intensity received from the at least two regions in the separation chamber, and a controller regulating speed of at least one pump or of the separation chamber in response to signals from the computational apparatus to avoid spill over.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: November 9, 2010
    Assignee: CaridianBCT, Inc.
    Inventor: William Sweat
  • Publication number: 20100078392
    Abstract: A density centrifuge blood processing system comprising a separation chamber rotating about a central rotation axis, the separation chamber being coupled to an elutriation chamber, a first detector for the separation chamber to detect light from an observation region, a computational apparatus distinguishing at least two regions in the observation region and distinguishing incipient spill over of cellular components out of the elutriation chamber as a function of light intensity received from the at least two regions in the separation chamber, and a controller regulating speed of at least one pump or of the separation chamber in response to signals from the computational apparatus to avoid spill over.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Applicant: CARIDIANBCT, INC.
    Inventor: William SWEAT
  • Publication number: 20100065507
    Abstract: A density centrifuge blood processing system with automatic two-dimensional optical control of fluid separation by observing fluid characteristics in observation regions. The location of the regions is determined by monitoring an optical reference. Points representing edges of an optical reference are measured and lines are computed through the points. An error measurement is calculated for each line. If the error is too large, the image is abandoned. One of the lines is selected as a referent line. A new line is calculated orthogonal to the referent line. The error function is again computed for the dependant line. If the error exceeds a selected maximum, the frame is discarded. A transformation function translates data points from an (r, s) domain derived from measurements of the edges into an (x, y) domain used to identify pixels in the observation areas.
    Type: Application
    Filed: September 18, 2008
    Publication date: March 18, 2010
    Applicant: CARIDIANBCT, INC.
    Inventor: William Sweat
  • Publication number: 20090166297
    Abstract: A blood cell collection system having means for detecting when a cell separation chamber has filled with white blood cells, and flushing the cells out of the cell separation chamber into a collect bag. A red-green sensor senses the optical characteristics of fluid leaving the cell separation chamber. A baseline value is calculated. The device calculates a ratio of the intensities of red light and green light and a peak-to-peak ratio of intensities. If either ratio exceeds thresholds computed from the baseline, the device flushes the cells into the collect bag. A camera detects white cells passing into the cell separation chamber and the device calculates the number of cells being collected. If the calculated number of collected cells exceeds a certain limit, the cell separation chamber is flushed. If the device is unable to establish a baseline, the donation can proceed, relying solely on the calculated number of collected cells.
    Type: Application
    Filed: September 26, 2008
    Publication date: July 2, 2009
    Applicant: CARIDIANBCT, INC.
    Inventors: William SWEAT, Jeremy KOLENBRANDER, John R. LINDNER, Jennifer HINZ