Patents by Inventor William T. Collins

William T. Collins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8334062
    Abstract: The present invention relates generally to a multi-layered article suitable for service in severe environments. The article may be formed of a substrate, such as silicon carbide and/or silicon nitride. The substrate may have a first layer of a mixture of a rare earth silicate and Cordierite. The substrate may also have a second layer of a rare earth silicate or a mixture of a rare earth silicate and cordierite.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: December 18, 2012
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Vimal K. Pujari, Ara Vartabedian, William T. Collins, David Woolley, Charles Bateman
  • Publication number: 20120315492
    Abstract: The present invention relates generally to a multi-layered article suitable for service in severe environments. The article may be formed of a substrate, such as silicon carbide and/or silicon nitride. The substrate may have a first layer of a mixture of a rare earth silicate and Cordierite. The substrate may also have a second layer of a rare earth silicate or a mixture of a rare earth silicate and cordierite.
    Type: Application
    Filed: February 1, 2008
    Publication date: December 13, 2012
    Inventors: Vimal K. Pujari, Ara Vartabedian, William T. Collins, David Woolley, Charles Bateman
  • Patent number: 8071495
    Abstract: A densified silicon nitride body can be formed using a lanthana-based sintering aid. The composition may exhibit properties that provide a material useful in a variety of applications that can benefit from improved wear characteristics. The composition may be densified by sintering and hot isostatic pressing.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: December 6, 2011
    Assignee: Ceramatec, Inc.
    Inventors: Vimal K. Pujari, William T. Collins
  • Publication number: 20110160035
    Abstract: In a method of preparing a boron carbide material, boron carbide powder is washed with essentially pure water at an elevated temperature to generate washed boron carbide powder. The washed boron carbide powder is combined with a sintering aid. The mixture of the boron carbide powder and the sintering aid is pressed to form a shaped material, and the shaped material is sintered. A sintered boron carbide material comprises a boron carbide component that includes boron carbide, elemental carbon, and not more than about 0.6 wt % of oxygen on the basis of the total weight of the boron carbide component. The sintered boron carbide material has a density of at least about 99% of the theoretical density. Another sintered boron carbide material comprises a boron carbide component that includes boron carbide, silicon carbide, elemental carbon, and not more than about 0.3 wt % oxygen on the basis of the total weight of the boron carbide component, and has a density of at least about 97% of the theoretical density.
    Type: Application
    Filed: March 10, 2011
    Publication date: June 30, 2011
    Applicant: Saint-Gobain Ceramics & Platics, Inc.
    Inventors: Vimal K. Pujari, James T. Hennessey, William T. Collins
  • Patent number: 7919040
    Abstract: In a method of preparing a boron carbide material, boron carbide powder is washed with essentially pure water at an elevated temperature to generate washed boron carbide powder. The washed boron carbide powder is combined with a sintering aid. The mixture of the boron carbide powder and the sintering aid is pressed to form a shaped material, and the shaped material is sintered. A sintered boron carbide material comprises a boron carbide component that includes boron carbide, elemental carbon, and not more than about 0.6 wt % of oxygen on the basis of the total weight of the boron carbide component. The sintered boron carbide material has a density of at least about 99% of the theoretical density. Another sintered boron carbide material comprises a boron carbide component that includes boron carbide, silicon carbide, elemental carbon, and not more than about 0.3 wt % oxygen on the basis of the total weight of the boron carbide component, and has a density of at least about 97% of the theoretical density.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: April 5, 2011
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Vimal K. Pujari, James T. Hennessey, William T. Collins
  • Publication number: 20090047544
    Abstract: In a method of preparing a boron carbide material, boron carbide powder is washed with essentially pure water at an elevated temperature to generate washed boron carbide powder. The washed boron carbide powder is combined with a sintering aid. The mixture of the boron carbide powder and the sintering aid is pressed to form a shaped material, and the shaped material is sintered. A sintered boron carbide material comprises a boron carbide component that includes boron carbide, elemental carbon, and not more than about 0.6 wt % of oxygen on the basis of the total weight of the boron carbide component. The sintered boron carbide material has a density of at least about 99% of the theoretical density. Another sintered boron carbide material comprises a boron carbide component that includes boron carbide, silicon carbide, elemental carbon, and not more than about 0.3 wt % oxygen on the basis of the total weight of the boron carbide component, and has a density of at least about 97% of the theoretical density.
    Type: Application
    Filed: August 7, 2008
    Publication date: February 19, 2009
    Applicant: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Vimal K. Pujari, James T. Hennessey, William T. Collins
  • Publication number: 20080150199
    Abstract: A densified silicon nitride body can be formed using a lanthana-based sintering aid. The composition may exhibit properties that provide a material useful in a variety of applications that can benefit from improved wear characteristics. The composition may be densified by sintering and hot isostatic pressing.
    Type: Application
    Filed: December 21, 2007
    Publication date: June 26, 2008
    Inventors: Vimal K. Pujari, William T. Collins
  • Patent number: 6762140
    Abstract: The present application is directed to ceramic compositions and, more specifically, to a silicon carbide composition and method of making it through liquid phase sintering. In one embodiment, the present invention is directed to an unsintered ceramic body including at least one liquid phase sintering aid. The unsintered ceramic body further includes a boron containing compound, a free carbon containing compound, and silicon carbide. In another embodiment, the present invention is directed to a method of making a sintered ceramic body. The method includes combining at least one liquid phase sintering aid, a boron containing compound, a free carbon containing compound, and silicon carbide to form a green ceramic, shaping the green ceramic into a ceramic body, and sintering the ceramic body.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: July 13, 2004
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Vimal K. Pujari, William T. Collins, Matteo Scalabrino
  • Patent number: 6680267
    Abstract: The present application is directed to ceramic compositions and, more specifically, to a silicon carbide composition and method of making it through liquid phase sintering. In one embodiment, the present invention is directed to an unsintered ceramic body including a rare earth metal oxide, one of a glass phase metal oxide and a glass phase metal nitride, a boron containing compound, a free carbon containing compound and silicon carbide. In another embodiment, the present invention is directed to a method of making a sintered ceramic body. The method includes combining a rare earth metal oxide, one of a glass phase metal oxide and a glass phase metal nitride, a boron containing compound, a free carbon containing compound, and silicon carbide to form a green ceramic. The method further includes shaping the green ceramic into a ceramic body and sintering the ceramic body.
    Type: Grant
    Filed: August 20, 2001
    Date of Patent: January 20, 2004
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Vimal K. Pujari, William T. Collins
  • Patent number: 6645612
    Abstract: The present invention relates to a method for making a hexagonal boron nitride slurry and the resulting slurry. The method involves mixing from about 0.5 wt. % to about 5 wt. % surfactant with about 30 wt. % to about 50 wt. % hexagonal boron nitride powder in a medium under conditions effective to produce a hexagonal boron nitride slurry. The present invention also relates to a method for making a spherical boron nitride powder and a method for making a hexagonal boron nitride paste using a hexagonal boron nitride slurry. Another aspect of the present invention relates to a hexagonal boron nitride paste including from about 60 wt. % to about 80 wt. % solid hexagonal boron nitride. Yet another aspect of the present invention relates to a spherical boron nitride powder, a polymer blend including a polymer and the spherical hexagonal boron nitride powder, and a system including such a polymer blend.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: November 11, 2003
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Vimal K. Pujari, William T. Collins, Jeffrey J. Kutsch
  • Publication number: 20030109371
    Abstract: The present application is directed to ceramic compositions and, more specifically, to a silicon carbide composition and method of making it through liquid phase sintering. In one embodiment, the present invention is directed to an unsintered ceramic body including at least one liquid phase sintering aid. The unsintered ceramic body further includes a boron containing compound, a free carbon containing compound, and silicon carbide. In another embodiment, the present invention is directed to a method of making a sintered ceramic body. The method includes combining at least one liquid phase sintering aid, a boron containing compound, a free carbon containing compound, and silicon carbide to form a green ceramic, shaping the green ceramic into a ceramic body, and sintering the ceramic body.
    Type: Application
    Filed: April 29, 2002
    Publication date: June 12, 2003
    Inventors: Vimal K. Pujari, William T. Collins, Matteo Scalabrino
  • Publication number: 20030073769
    Abstract: The present invention relates to a method for making a hexagonal boron nitride slurry and the resulting slurry. The method involves mixing from about 0.5 wt. % to about 5 wt. % surfactant with about 30 wt. % to about 50 wt. % hexagonal boron nitride powder in a medium under conditions effective to produce a hexagonal boron nitride slurry. The present invention also relates to a method for making a spherical boron nitride powder and a method for making a hexagonal boron nitride paste using a hexagonal boron nitride slurry. Another aspect of the present invention relates to a hexagonal boron nitride paste including from about 60 wt. % to about 80 wt. % solid hexagonal boron nitride. Yet another aspect of the present invention relates to a spherical boron nitride powder, a polymer blend including a polymer and the spherical hexagonal boron nitride powder, and a system including such a polymer blend.
    Type: Application
    Filed: August 7, 2001
    Publication date: April 17, 2003
    Inventors: Vimal K. Pujari, William T. Collins, Jeffrey J. Kutsch
  • Publication number: 20030054939
    Abstract: The present application is directed to ceramic compositions and, more specifically, to a silicon carbide composition and method of making it through liquid phase sintering. In one embodiment, the present invention is directed to an unsintered ceramic body including a rare earth metal oxide, one of a glass phase metal oxide and a glass phase metal nitride, a boron containing compound, a free carbon containing compound and silicon carbide. In another embodiment, the present invention is directed to a method of making a sintered ceramic body. The method includes combining a rare earth metal oxide, one of a glass phase metal oxide and a glass phase metal nitride, a boron containing compound, a free carbon containing compound, and silicon carbide to form a green ceramic. The method further includes shaping the green ceramic into a ceramic body and sintering the ceramic body.
    Type: Application
    Filed: August 20, 2001
    Publication date: March 20, 2003
    Inventors: Vimal K. Pujari, William T. Collins
  • Patent number: 5696041
    Abstract: This invention is related to a flowable slurry comprising between 79 and 86 w/o silicon nitride solids.
    Type: Grant
    Filed: January 15, 1997
    Date of Patent: December 9, 1997
    Assignee: Saint-Gobain/Norton Industrial Ceramics Corp.
    Inventors: William T. Collins, Lenny C. Sales, Vimal K. Pujari
  • Patent number: 5499405
    Abstract: A urinal for capturing and directing urine into a drain line. The inventive device includes an adjustable mounting structure securable to a wall surface within a bathroom. A urinal is supported by the adjustable mounting structure and can be positioned at a desired height. A water conduit communicates with a water supply line of a nearby sink or the like to permit selective flushing of the urinal, and a drain conduit communicates with a sink drain line to receive and dispose of the urine and flush water. The device can be readily installed into existing bathroom structures to provide an alternative to a conventional toilet, thereby reducing flushing of the toilet and saving water.
    Type: Grant
    Filed: November 16, 1994
    Date of Patent: March 19, 1996
    Inventor: William T. Collins
  • Patent number: 5054575
    Abstract: A rear suspension particularly adapted for light and medium weight trucks and buses wherein a chassis and body are supported upon a dead axle the latter of which is of a light weight and rigid construction so as to permit a lower positioning of the chassis relative to the ground and in such a way as to eliminate lateral displacement of the dead axle relative to the chassis and wherein the aft end of the roll axis of the suspension is either horizontal or displaced vertically above a horizontal line passing through the point of articulation of the suspension to the chassis to eliminate the tendency of the dead axle to oversteer the vehicle as it moves vertically relative to the chassis.
    Type: Grant
    Filed: October 24, 1990
    Date of Patent: October 8, 1991
    Assignee: DLMA Transportation, Inc.
    Inventor: William T. Collins
  • Patent number: 4470629
    Abstract: An adjustable vehicle seat including first and second seat members pivotally interconnected such that the second seat member is pivotally movable between first and second opposed direction facing positions at opposed ends of the first seat member. An angular adjustment mechanism is associated with the interconnected first and second seat members and enables the angular relationship of the second seat member to be selectively adjusted with respect to the first seat member in a plurality of angular positions. A latch is provided for latching the second seat member in a fixed position when the second seat member is oriented in the first direction facing position.
    Type: Grant
    Filed: June 9, 1982
    Date of Patent: September 11, 1984
    Assignee: Vixen Motor Company
    Inventor: William T. Collins, Jr.
  • Patent number: RE45803
    Abstract: The present invention relates to a method for making a hexagonal boron nitride slurry and the resulting slurry. The method involves mixing from about 0.5 wt. % to about 5 wt. % surfactant with about 30 wt. % to about 50 wt. % hexagonal boron nitride powder in a medium under conditions effective to produce a hexagonal boron nitride slurry. The present invention also relates to a method for making a spherical boron nitride powder and a method for making a hexagonal boron nitride paste using a hexagonal boron nitride slurry. Another aspect of the present invention relates to a hexagonal boron nitride paste including from about 60 wt. % to about 80 wt. % solid hexagonal boron nitride. Yet another aspect of the present invention relates to a spherical boron nitride powder, a polymer blend including a polymer and the spherical hexagonal boron nitride powder, and a system including such a polymer blend.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: November 17, 2015
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Vimal K. Pujari, William T. Collins, Jeffrey J. Kutsch
  • Patent number: RE45923
    Abstract: The present invention relates to a method for making a hexagonal boron nitride slurry and the resulting slurry. The method involves mixing from about 0.5 wt. % to about 5 wt. % surfactant with about 30 wt. % to about 50 wt. % hexagonal boron nitride powder in a medium under conditions effective to produce a hexagonal boron nitride slurry. The present invention also relates to a method for making a spherical boron nitride powder and a method for making a hexagonal boron nitride paste using a hexagonal boron nitride slurry. Another aspect of the present invention relates to a hexagonal boron nitride paste including from about 60 wt. % to about 80 wt. % solid hexagonal boron nitride. Yet another aspect of the present invention relates to a spherical boron nitride powder, a polymer blend including a polymer and the spherical hexagonal boron nitride powder, and a system including such a polymer blend.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: March 15, 2016
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Vimal K. Pujari, William T. Collins, Jeffrey J. Kutsch, Thomas M. Clere, Eugene A. Pruss
  • Patent number: RE47635
    Abstract: The present invention relates to a method for making a hexagonal boron nitride slurry and the resulting slurry. The method involves mixing from about 0.5 wt. % to about 5 wt. % surfactant with about 30 wt. % to about 50 wt. % hexagonal boron nitride powder in a medium under conditions effective to produce a hexagonal boron nitride slurry. The present invention also relates to a method for making a spherical boron nitride powder and a method for making a hexagonal boron nitride paste using a hexagonal boron nitride slurry. Another aspect of the present invention relates to a hexagonal boron nitride paste including from about 60 wt. % to about 80 wt. % solid hexagonal boron nitride. Yet another aspect of the present invention relates to a spherical boron nitride powder, a polymer blend including a polymer and the spherical hexagonal boron nitride powder, and a system including such a polymer blend.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: October 8, 2019
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Vimal K. Pujari, William T. Collins, Jeffrey J. Kutsch