Patents by Inventor William T. Yost

William T. Yost has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6584848
    Abstract: An acoustic nonlinearity parameter (&bgr;) measurement method and system for Non-Destructive Evaluation (NDE) of materials and structural members novelly employs a loosely mounted dielectric electrostatic ultrasonic transducer (DEUT) to receive and convert ultrasonic energy into an electrical signal which can be analyzed to determine the &bgr; of the test material. The dielectric material is ferroelectric with a high dielectric constant ∈. A computer-controlled measurement system coupled to the DEUT contains an excitation signal generator section and a measurement and analysis section. As a result, the DEUT measures the absolute particle displacement amplitudes in test material, leading to derivation of the nonlinearity parameter (&bgr;) without the costly, low field reliability methods of the prior art.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: July 1, 2003
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: William T. Yost, John H. Cantrell, Jr.
  • Patent number: 6475147
    Abstract: Changes in intracranial pressure can be measured dynamically and non-invasively by monitoring one or more cerebrospinal fluid pulsatile components. Pulsatile components such as systolic and diastolic blood pressures are partially transferred to the cerebrospinal fluid by way of blood vessels contained in the surrounding brain tissue and membrane. As intracranial pressure varies these cerebrospinal fluid pulsatile components also vary. Thus, intracranial pressure can be dynamically measured. Furthermore, use of acoustics allows the measurement to be completely non-invasive. In the preferred embodiment, phase comparison of a reflected acoustic signal to a reference signal using a constant frequency pulsed phase-locked-loop ultrasonic device allows the pulsatile components to be monitored. Calibrating the device by inducing a known change in intracranial pressure allows conversion to changes in intracranial pressure.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: November 5, 2002
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: William T. Yost, John H. Cantrell
  • Patent number: 6413227
    Abstract: A non-invasive method and apparatus for monitoring changes in intracranial pressure which removes extracranial effects from the measurements. The method and apparatus can include the supplying of a fixed frequency electrical output to a transducer coupled to the patient's head, thereby generating an acoustical tone burst in the patient's head which generates a first echo and a second echo, the first echo reflecting from a first interface in the side of the patient's head coupled to the transducer, and the second echo reflecting from a second interface at the opposite side of the patient's head. The first and second echoes are received by the transducer which can generate a first electrical signal and a second electrical signal, wherein the first and second electrical signals vary in accordance with the corresponding first and second echoes.
    Type: Grant
    Filed: December 2, 1999
    Date of Patent: July 2, 2002
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: William T. Yost, John H. Cantrell
  • Patent number: 6343513
    Abstract: An acoustic non-linearity parameter (&bgr;) measurement method and system for Non-Destructive Evaluation (NDE) of materials and structural members obviates the need for electronic calibration of the measuring equipment. Unlike known substitutional measuring techniques requiring elaborate calibration procedures, the electrical outputs of the capacitive detector of a sample with known &bgr; and the test sample of unknown &bgr; are compared to determine the unknown &bgr;. In order to provide the necessary stability of the present-inventive reference-based approach, the bandpass filters of the measurement system are maintained in a temperature-controlled environment, and the line voltage supplied to said amplifiers is well-regulated.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: February 5, 2002
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: William T. Yost, John H. Cantrell
  • Patent number: 6197130
    Abstract: A method and apparatus are provided which enable the nondestructive testing of strength of a heat treated alloy. An alloy is insonified with an ultrasonic signal. The resulting convoluted signal is detected and the acoustic nonlinearity parameter is determined. The acoustic nonlinearity parameter shows a peak corresponding to a peak in material strength.
    Type: Grant
    Filed: April 24, 1998
    Date of Patent: March 6, 2001
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: John H. Cantrell, William T. Yost
  • Patent number: 6007489
    Abstract: A method and apparatus for determining important histological characteristics of tissue, including a determination of the tissue's health. Electrical pulses are converted into meaningful numerical representations through the use of Fourier Transforms. These numerical representations are then used to determine important histological characteristics of tissue. This novel invention does not require rectification and thus provides for detailed information from the ultrasonic scan.
    Type: Grant
    Filed: April 21, 1998
    Date of Patent: December 28, 1999
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: William T. Yost, John H. Cantrell, George A. Tal Er
  • Patent number: 5773811
    Abstract: The invention is a method and apparatus for the application of machine readable matrix marking symbols, and especially two-dimensional matrix symbols, to a "host" substrate, optionally covering the symbols with protective layers, then using an ultrasound imaging apparatus to capture echo signals associated with the matrix symbols, then feeding the resultant information to a matrix symbol decoder to yield human-readable and video monitor displayable information.
    Type: Grant
    Filed: June 4, 1996
    Date of Patent: June 30, 1998
    Inventors: Harry F. Schramm, Jr., William T. Yost, Donald L. Roxby, James D. Teed
  • Patent number: 5746209
    Abstract: A method and apparatus for determining important histological characteristics of tissue, including a determination of the tissue's health. Electrical pulses are converted into meaningful numerical representations through the use of Fourier Transforms. These numerical representations are then used to determine important histological characteristics of tissue. This novel invention does not require rectification and thus provides for detailed information from the ultrasonic scan.
    Type: Grant
    Filed: January 26, 1996
    Date of Patent: May 5, 1998
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: William T. Yost, John H. Cantrell, George A. Taler
  • Patent number: 5736642
    Abstract: A method and system are provided to detect defects in a material. Waves of known frequency(ies) are mixed at an interaction zone in the material. As a result, at least one of a difference wave and a sum wave are generated in the interaction zone. The difference wave occurs at a difference frequency and the sum wave occurs at a sum frequency. The amplitude of at least one nonlinear signal based on the sum and/or difference waves is then measured. The nonlinear signal is defined as the amplitude of one of the difference wave and sum wave relative to the product of the amplitude of the surface waves. The amplitude of the nonlinear signal is an indication of defects (e.g., dislocation dipole density) in the interaction zone.
    Type: Grant
    Filed: January 8, 1997
    Date of Patent: April 7, 1998
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: William T. Yost, John H. Cantrell
  • Patent number: 5617873
    Abstract: Non-invasive measuring devices responsive to changes in a patient's intracranial pressure (ICP) can be accurately calibrated for monitoring purposes by providing known changes in ICP by non-invasive methods, such as placing the patient on a tilting bed and calculating a change in ICP from the tilt angle and the length of the patient's cerebrospinal column, or by placing a pressurized skull cap on the patient and measuring the inflation pressure. Absolute values for the patient's pressure-volume index (PVI) and the steady state ICP can then be determined by inducing two known changes in the volume of cerebrospinal fluid while recording the corresponding changes in ICP by means of the calibrated measuring device. The two pairs of data for pressure change and volume change are entered into an equation developed from an equation describing the relationship between ICP and cerebrospinal fluid volume. PVI and steady state ICP are then determined by solving the equation.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: April 8, 1997
    Assignee: The United States of America as represented by the Administrator, of the National Aeronautics and Space Administration
    Inventors: William T. Yost, John H. Cantrell, Jr.
  • Patent number: 5601086
    Abstract: A system for and method of detecting and measuring concentrations of an ultrasonically-reflective microsphere contrast agent involving detecting non-linear sum and difference beat frequencies produced by the microspheres when two impinging signals with non-identical frequencies are combined by mixing. These beat frequencies can be used for a variety of applications such as detecting the presence of and measuring the flow rates of biological fluids and industrial liquids, including determining the concentration level of microspheres in the myocardium.
    Type: Grant
    Filed: May 12, 1995
    Date of Patent: February 11, 1997
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Robert A. Pretlow, III, William T. Yost, John H. Cantrell, Jr.
  • Patent number: 5566573
    Abstract: A capacitor having two substantially parallel conductive faces is acoustically coupled to a conductive sample end such that the sample face is one end of the capacitor. A non-contacting dielectric may serve as a spacer between the two conductive plates. The formed capacitor is connected to an LC oscillator circuit such as a Hartley oscillator circuit producing an output frequency which is a function of the capacitor spacing. This capacitance oscillates as the sample end coating is oscillated by an acoustic wave generated in the sample by a transmitting transducer. The electrical output can serve as an absolute indicator of acoustic wave displacement.
    Type: Grant
    Filed: September 27, 1994
    Date of Patent: October 22, 1996
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventor: William T. Yost
  • Patent number: 5448995
    Abstract: A method for non-invasive evaluation of diaphragmatic function in humans measures the thickness of the diaphragm in real time with an ultrasonic device, and displays the variations of diaphragm thickness versus time. Formulae are given for calculating a quantitative value for the reserve fatigue capacity of a patient's diaphragm from data obtained by measuring the time limits for maintaining a constant breathing pattern on the display at two different pressure differentials in series with the patient's airways. An apparatus for displaying the diaphragm thickness in real time is also described. The method can be used both on healthy patients and on patients with so severe breathing dysfunctions that they require breathing support from respirators.
    Type: Grant
    Filed: February 14, 1994
    Date of Patent: September 12, 1995
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: William T. Yost, Juliette L. Wait, Patricia A. Nahormek, John H. Cantrell, Pamela D. Hanna-Hawver
  • Patent number: 5393980
    Abstract: A light source directs ultraviolet light onto a test surface and a detector detects a current of photoelectrons generated by the light. The detector includes a collector which is positively biased with respect to the test surface. Quality is indicated based on the photoelectron current. The collector is then negatively biased to replace charges removed by the measurement of a nonconducting substrate to permit subsequent measurements. Also, the intensity of the ultraviolet light at a particular wavelength is monitored and the voltage of the light source varied to maintain the light a constant desired intensity. The light source is also cooled via a gas circulation system. If the test surface is an insulator, the surface is bombarded with ultraviolet light in the presence of an electron field to remove the majority of negative charges from the surface. The test surface is then exposed to an ion field until it possesses no net charge. The technique described above is then performed to assess quality.
    Type: Grant
    Filed: May 11, 1993
    Date of Patent: February 28, 1995
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: William T. Yost, Christopher S. Welch, Edmond J. Joe, Bill B. Hefner, Jr.
  • Patent number: 5325339
    Abstract: Calibrating an ultrasonic transducer can be performed with a reduced number of calculations and testing. A wide-band pulser is connected to an ultrasonic transducer under test to generate ultrasonic waves in a liquid. A single frequency is transmitted to the electrostatic acoustic transducer (ESAT) and the voltage change produced is monitored. Then a broadband ultrasonic pulse is generated by the ultrasonic transducer and received by the ESAT. The output of the ESAT is amplified and input to a digitized oscilloscope for Fast Fourier Transform. The resulting plot is normalized with the monitored signal from the single frequency pulse. The plot is then corrected for characteristics of the membrane and diffraction effects. The transfer function of the final plot is determined. The transfer function gives the final sensitivity of the ultrasonic transducer as a function of frequency.
    Type: Grant
    Filed: August 31, 1993
    Date of Patent: June 28, 1994
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: William T. Yost, John H. Cantrell
  • Patent number: 5214955
    Abstract: A measuring apparatus uses a fixed frequency oscillator to measure small changes in the phase velocity ultrasonic sound when a sample is exposed to environmental changes such as changes in pressure, temperature, etc. The invention automatically balances electrical phase shifts against the acoustical phase shifts in order to obtain an accurate measurement of electrical phase shifts.
    Type: Grant
    Filed: August 26, 1991
    Date of Patent: June 1, 1993
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: William T. Yost, Peter W. Kushnick, John H. Cantrell
  • Patent number: 5164669
    Abstract: The invention is a method and apparatus for characterizing residual uniaxial stress in a ferromagnetic test member by distinguishing between residual stresses resulting from positive (tension) forces and negative (compression) forces by using the distinct and known magnetoacoustic (MAC) and a novel magnetoacoustic emission (MAE) measurement circuit means. A switch permits the selective operation of the respective circuit means.
    Type: Grant
    Filed: July 23, 1990
    Date of Patent: November 17, 1992
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Min Namkung, Peter W. Kushnick, William T. Yost, John L. Grainger
  • Patent number: 5121058
    Abstract: A method and apparatus for testing steel components for temperature embrittlement uses magneto-acoustic emission to nondestructively evaluate the component. Acoustic emission signals occur more frequently at higher levels in embrittled components. A pair of electromagnets are used to create magnetic induction in the test component. Magneto-acoustic emission signals may be generated by applying an AC current to the electromagnets. The acoustic emission signals are analyzed to provide a comparison between a component known to be umembrittled and a test component. Magnetic remanence is determined by applying a DC current to the electromagnets, then turning the magnets off and observing the residual magnetic induction.
    Type: Grant
    Filed: April 15, 1991
    Date of Patent: June 9, 1992
    Assignee: Administrator, National Aeronautics and Space Administration
    Inventors: Sidney G. Allison, Min Namkung, William T. Yost, John H. Cantrell
  • Patent number: 5117184
    Abstract: A method and apparatus for testing steel components for temper embrittlement uses magneto-acoustic emission to nondestructively evaluate the component. Acoustic emission signals occur more frequently at higher levels in embrittled components. A pair of electromagnets are used to create magnetic induction in the test component. Magneto-acoustic emission signals may be generated by applying an AC current to the electromagnets. The acoustic emission signals are analyzed to provide a comparison between a component known to be unembrittled and a test component. Magnetic remanence is determined by applying a DC current to the electromagnets, then turning the magnets off and observing the residual magnetic induction.
    Type: Grant
    Filed: November 2, 1990
    Date of Patent: May 26, 1992
    Inventors: Sidney G. Allison, Min Namkung, William T. Yost, John H. Cantrell
  • Patent number: 5109195
    Abstract: A method and apparatus for testing steel components for temper embrittlement uses magneto-acoustic emission to nondestructively evaluate the component. Acoustic emission signals occur more frequently at higher levels in embrittled components. A pair of electromagnets are used to create magnetic induction in the test component. Magneto-acoustic emission signals may be generated by applying an AC current to the electromagnets. The acoustic emission signals are analyzed to provide a comparison between a component known to be umembrittled and a test component. Magnetic remanence is determined by applying a DC current to the electromagnets, then turning the magnets off and observing the residual magnetic induction.
    Type: Grant
    Filed: December 12, 1989
    Date of Patent: April 28, 1992
    Inventors: Sidney G. Allison, Min Namkung, William T. Yost, John H. Cantrell