Patents by Inventor William Thomas Carter

William Thomas Carter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160045967
    Abstract: A system of manufacturing a component comprises forming a component on a conductive build plate. The component defines at least one access port and includes an inner surface that defines at least one internal passage. The system further includes forming at least one electrode within the at least one internal passage, wherein the at least one electrode is electrically isolated from the component. An electromotive force is applied to the at least one electrode to facilitate smoothing the inner surface.
    Type: Application
    Filed: October 30, 2015
    Publication date: February 18, 2016
    Inventors: William Thomas Carter, John Broddus Deaton, JR., Andrew Lee Trimmer, Michael John Fornasiero
  • Publication number: 20160032766
    Abstract: A method of manufacture is provided. The manufacturing method includes using a laser deposition process to apply a laser deposited material on an outer surface of a substrate to form one or more grooves on the outer surface of a substrate. Each groove has a base and an opening and extends at least partially along the outer surface of the substrate, where the substrate has an inner surface that defines at least one hollow, interior space. The manufacturing method further includes disposing an additional material over the laser deposited material, to define one or more channels for cooling the component. The additional material may include additional laser deposited material layers or a coating. Other manufacturing methods and a component are also provided.
    Type: Application
    Filed: March 14, 2013
    Publication date: February 4, 2016
    Applicant: General Electric Company
    Inventors: Ronald Scott Bunker, William Thomas Carter
  • Patent number: 9192999
    Abstract: A method of manufacturing a component comprises forming a component on a conductive build plate. The component defines at least one access port and includes an inner surface that defines at least one internal passage. The method further includes forming at least one electrode within the at least one internal passage, wherein the at least one electrode is electrically isolated from the component. An electromotive force is applied to the at least one electrode to facilitate smoothing the inner surface.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: November 24, 2015
    Assignee: General Electric Company
    Inventors: William Thomas Carter, John Broddus Deaton, Jr., Andrew Lee Trimmer, Michael John Fornasiero
  • Publication number: 20150165556
    Abstract: A method of forming a build in a powder bed includes emitting a plurality of laser beams from selected fibers of a diode laser fiber array onto the powder bed, the selected fibers of the array corresponding to a pattern of a layer of the build; and simultaneously melting powder in the powder bed corresponding to the pattern of the layer of the build.
    Type: Application
    Filed: December 16, 2013
    Publication date: June 18, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Marshall Gordon Jones, William Thomas Carter, James William Sears
  • Publication number: 20150060403
    Abstract: A method for manufacturing a fuel contacting component that facilitates reducing coke formation on at least one surface of the fuel contacting component is disclosed herein. The method includes applying a slurry composition including a powder including aluminum to the component surface, wherein the fuel contacting component is formed by an additive manufacturing process. The slurry composition is heat treated to diffuse the aluminum into the component surface. The heat treatment comprises forming a diffusion aluminide coating on the component surface, wherein the diffusion coating comprises a diffusion sublayer formed on the component surface and an additive sublayer formed on the diffusion sublayer. The method further comprises removing the additive sublayer of the diffusion aluminide coating with at least one aqueous solution such that the diffusion sublayer and the component surface are substantially unaffected, wherein the diffusion layer facilitates preventing coke formation on component surface.
    Type: Application
    Filed: September 5, 2013
    Publication date: March 5, 2015
    Applicant: General Electric Company
    Inventors: William Thomas Carter, James Anthony Ruud, Lawrence Bernard Kool, Justin John Gambone, Jr., Christine Mary Furstoss
  • Publication number: 20150004046
    Abstract: A system for fabricating a component includes an additive manufacturing device and a computing device. The additive manufacturing device is configured to fabricate a first component by sequentially forming a plurality of superposed layers based upon a nominal digital representation of a second component, which includes a plurality of nominal digital two-dimensional cross-sections, each corresponding to a layer of the first component.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Michael Evans Graham, William Thomas Carter, Mark Allen Cheverton, Pinghai Yang
  • Publication number: 20150001093
    Abstract: A method of manufacturing a component comprises forming a component on a conductive build plate. The component defines at least one access port and includes an inner surface that defines at least one internal passage. The method further includes forming at least one electrode within the at least one internal passage, wherein the at least one electrode is electrically isolated from the component. An electromotive force is applied to the at least one electrode to facilitate smoothing the inner surface.
    Type: Application
    Filed: July 1, 2013
    Publication date: January 1, 2015
    Inventors: William Thomas Carter, John Broddus Deaton, JR., Andrew Lee Trimmer, Michael John Fornasiero
  • Patent number: 8387561
    Abstract: A method and apparatus for depositing a coating material on a surface of a substrate by an ion plasma deposition process using a hollow cathode is disclosed. The cathode may be a substantially cylindrical hollow cathode. A plasma arc is formed on the outer circumference of the cathode to remove coating material from the cathode, which is then deposited on a surface of a substrate. An internal arc drive magnet is contained within the hollow bore of the cathode and cooling is provided to the magnet during operation.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: March 5, 2013
    Assignee: General Electric Company
    Inventors: Scott Andrew Weaver, William Thomas Carter, Paul Mario Marruso
  • Publication number: 20130047394
    Abstract: A system and method for refurbishing forged components. The system includes an identification subsystem for identifying a forged component for refurbishment, a removal subsystem for removing portions of the forged component, and a rebuilding subsystem for rebuilding the forged component, the rebuilding subsystem including an assembly for adding a non-molten material to the forged component.
    Type: Application
    Filed: August 29, 2011
    Publication date: February 28, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Laurent Cretegny, William Thomas Carter, Leonardo Ajdelsztajn
  • Publication number: 20110193338
    Abstract: A threaded metal pipe is provided which comprises a metal pipe having an inner surface, an outer surface, a first end portion and a second end portion; a metal sleeve layer disposed on an outer surface of at least one of the first end portion and the second end portion, said metal sleeve layer and said end portion forming a multilayer structure having an inner surface and an outer surface; and a plurality of pipe threads inscribed in at least a portion of the multilayer structure. The threaded metal pipe provided by the present invention may be used advantageously as, inter alia, oil petroleum production risers in which the pipe segment wall thicknesses are minimized.
    Type: Application
    Filed: February 9, 2010
    Publication date: August 11, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: William Thomas Carter
  • Publication number: 20110073471
    Abstract: A method and apparatus for depositing a coating material on a surface of a substrate by an ion plasma deposition process using a hollow cathode is disclosed. The cathode may be a substantially cylindrical hollow cathode. A plasma arc is formed on the outer circumference of the cathode to remove coating material from the cathode, which is then deposited on a surface of a substrate. An internal arc drive magnet is contained within the hollow bore of the cathode and cooling is provided to the magnet during operation.
    Type: Application
    Filed: December 10, 2010
    Publication date: March 31, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Scott Andrew Weaver, William Thomas Carter, Paul Mario Marruso
  • Patent number: 7879203
    Abstract: A method and apparatus for depositing a coating material on a surface of a substrate by an ion plasma deposition process using a hollow cathode is disclosed. The cathode may be a substantially cylindrical hollow cathode. A plasma arc is formed on the outer circumference of the cathode to remove coating material from the cathode, which is then deposited on a surface of a substrate. An internal arc drive magnet is contained within the hollow bore of the cathode and cooling is provided to the magnet during operation.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: February 1, 2011
    Assignee: General Electric Company
    Inventors: Scott Andrew Weaver, William Thomas Carter, Paul Mario Marruso
  • Publication number: 20100254820
    Abstract: A restored or regenerated article including a residual substrate comprised of a first material and a restorative or regenerative layer of second material overlying at least a portion of the residual substrate. The second material is substantially similar in composition to the first material to promote an integral bond therebetween. The second material comprises the deposit of a suitable deposition process, i.e., vapor phase deposition, cathodic arc deposition, or sputtering. The restored/regenerated article includes an environmental coating at least partly diffused into the restorative or regenerative layer. The environmental coating comprises a deposit from a deposition process selected from vapor phase deposition, cathodic arc deposition, and combinations thereof. Heat treatments of about 2 hours or longer at temperatures between about 1500 ° F. to about 2300° F. (about 816° C. to about 1260° C.) to enhance the bond between the residual substrate and the restorative/regenerative layer.
    Type: Application
    Filed: December 29, 2006
    Publication date: October 7, 2010
    Inventors: Michael Patrick Maly, William Thomas Carter, JR., Thomas Joseph Kelly, Mark David Veliz
  • Publication number: 20080160213
    Abstract: A method for restoring or regenerating an article, particularly a component for use in a gas turbine engine, includes providing a residual substrate comprised of a first material, evaluating a wall thickness of the residual substrate, and depositing a layer of a second material overlying at least a portion of the residual substrate. The second material is substantially similar in composition to the first material. The layer is deposited by vapor phase deposition, ion plasma deposition, cathodic arc deposition, sputtering, and combinations thereof. An environmental coating is deposited onto the component by vapor phase deposition, cathodic arc deposition, and combinations thereof. The method may include a heat treatment at temperatures between about 1500° F. to about 2300° F. (about 816° C. to about 1260° C.) for between about 2 to about 24 hours. The method may include a surface treatment such as grit blast polishing. Following use of the restored/regenerated component, the repair process may be repeated.
    Type: Application
    Filed: December 29, 2006
    Publication date: July 3, 2008
    Inventors: Michael Patrick Maly, William Thomas Carter, Thomas Joseph Kelly, Mark David Veliz
  • Publication number: 20080160208
    Abstract: A system for restoring or regenerating an article, such as turbine blade or vane for a gas turbine engine, includes a first cathode and a second cathode operably disposed in a deposition chamber. The first cathode includes a first deposition material substantially similar in composition to the material of a residual substrate. The second cathode includes a second deposition material able to form an environmental coating on a restored/regenerated component. The first and second cathodes may be sequentially operated without interrupting the vacuum conditions in the deposition chamber. A method for restoring or regenerating an article includes utilizing the first cathode to deposit a layer of first deposition material onto the residual substrate and subsequently applying the environmental coating utilizing a common deposition chamber, and without interrupting the vacuum conditions between depositions.
    Type: Application
    Filed: December 29, 2006
    Publication date: July 3, 2008
    Inventors: Michael Patrick Maly, William Thomas Carter, Thomas Joseph Kelly, Mark David Veliz
  • Publication number: 20080138529
    Abstract: A method and apparatus for depositing a coating material on a surface of a substrate by an ion plasma deposition process using a hollow cathode is disclosed. The cathode may be a substantially cylindrical hollow cathode. A plasma arc is formed on the outer circumference of the cathode to remove coating material from the cathode, which is then deposited on a surface of a substrate. An internal arc drive magnet is contained within the hollow bore of the cathode and cooling is provided to the magnet during operation.
    Type: Application
    Filed: December 11, 2006
    Publication date: June 12, 2008
    Applicant: GE GLOBAL RESEARCH CENTER
    Inventors: Scott Andrew Weaver, William Thomas Carter, Paul Mario Marruso
  • Patent number: 7381366
    Abstract: An electroslag-cold hearth (ESCH) system for refining or producing a desired metal or metal alloy is described. The system includes at least one cold hearth vessel capable of holding a pool of molten liquid metal and an overlying slag layer, and an ingot mold laterally off-set from the cold hearth. A source of raw material, e.g., a feed electrode, is positioned above the cold hearth, and fed into the molten slag in a refining operation. A flow-over dam separates the ingot mold from the cold hearth, preventing the flow of inclusions and other foreign bodies into the ingot mold. In some instances, a non-consumable electrode provides additional thermal energy to the slag. In the production operation, the metal source can be a salt from which the desired metal can be electrochemically extracted. Related methods for refining or producing metals such as titanium alloys are also described.
    Type: Grant
    Filed: December 31, 2003
    Date of Patent: June 3, 2008
    Assignee: General Electric Company
    Inventors: William Thomas Carter, Jr., Mark Gilbert Benz, Clifford Earl Shamblen, Andrew Philip Woodfield
  • Patent number: 7001443
    Abstract: A metallic alloy is prepared from a gaseous mixture of at least two non-oxide precursor compounds, wherein the non-oxide precursor compounds collectively comprise the metallic constituents. The mixture of the non-oxide precursor compounds is oxidized to form a solid mixed metallic oxide. The solid mixed metallic oxide is chemically reduced to produce the metallic alloy.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: February 21, 2006
    Assignee: General Electric Company
    Inventors: Andrew Philip Woodfield, Eric Allen Ott, William Thomas Carter, Jr.
  • Publication number: 20040118246
    Abstract: A metallic alloy is prepared from a gaseous mixture of at least two non-oxide precursor compounds, wherein the non-oxide precursor compounds collectively comprise the metallic constituents. The mixture of the non-oxide precursor compounds is oxidized to form a solid mixed metallic oxide. The solid mixed metallic oxide is chemically reduced to produce the metallic alloy.
    Type: Application
    Filed: December 23, 2002
    Publication date: June 24, 2004
    Inventors: Andrew Philip Woodfield, Eric Allen Ott, William Thomas Carter
  • Patent number: 6631753
    Abstract: A casting system and method for producing a metal casting is provided. The metal casting can comprise a fine-grain, homogeneous microstructure that is essentially oxide- and sulfide-free, segregation defect free, and essentially free of voids caused by air entrapped during solidification of the metal from a liquidus state to a solid state. The casting system can comprise an electroslag refining system; a nucleated casting system; and a cooling system that cools the metal casting so as to cool a liquidus portion of the metal casting. The metal casting is cooled in a manner sufficient to provide a microstructure that comprises a fine-grain, homogeneous microstructure that is essentially oxide- and sulfide-free, segregation defect free, and essentially free of voids caused by air entrapped during solidification from a liquidus state to a solid state.
    Type: Grant
    Filed: February 23, 2000
    Date of Patent: October 14, 2003
    Assignee: General Electric Company
    Inventors: William Thomas Carter, Jr., Mark Gilbert Benz, Robert John Zabala, Bruce Alan Knudsen