Patents by Inventor William Thompson MAIN

William Thompson MAIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230063755
    Abstract: Presented systems and methods facilitate efficient and effective generation and delivery of radiation. In one embodiment, a radiation system includes a patient station, wherein the patient station includes a plurality of accelerator systems, and a microwave generation system configured to generate microwaves for the plurality of accelerators. The plurality of accelerators can be configured to provide substantially simultaneous multiple radiation beams from the plurality of accelerators. In one exemplary implementation, the microwave generation system includes a plurality of radio frequency (RF) sources, wherein respective ones of the plurality of RF sources generate separate microwave signals for corresponding respective ones of the plurality of accelerator systems, and a plurality of modulators, wherein respective ones of the plurality of modulators modulate generation of the separate microwave signals by the respective ones of the plurality of RF sources.
    Type: Application
    Filed: August 17, 2021
    Publication date: March 2, 2023
    Inventors: Flavio POEHLMANN-MARTINS, William Thompson MAIN, Amir SHOJAEI
  • Publication number: 20230066389
    Abstract: Presented systems and methods facilitate efficient and effective generation and delivery of radiation. In one embodiment, an accelerator system includes a particle source, an acceleration portion, a high intensity target, and a target location control component. The particle source is configured to generate charged particles. The acceleration portion is configured to accelerate the charged particles. The high intensity target is configured to generate Bremsstrahlung radiation in response to impact by the charged particles. The target location control component configured to change the location of charged particle impacts on the high intensity target. In one exemplary implementation the change of location of charged particle impact is based on thermal diffusion and said location of charged particle impacts is moved at a rate greater than a rate of diffusion of detrimental heat impacts on the high intensity target.
    Type: Application
    Filed: August 17, 2021
    Publication date: March 2, 2023
    Inventors: Flavio POEHLMANN-MARTINS, William Thompson MAIN, Amir SHOJAEI
  • Publication number: 20230065037
    Abstract: Presented systems and methods facilitate efficient and effective generation and delivery of radiation. In one embodiment, a radiation generation component includes a high intensity target that produces Bremsstrahlung radiation in response to impacts by charged particles, wherein the high intensity target is configured with operating limitations based primarily on catastrophic failure mechanisms rather than fatigue failure mechanisms. The high intensity target is configured to be compatible with a loading system of a radiation generation system. The high intensity target can have a catastrophic failure strain percentage in the range of 0.5 to 4.0 percent. The catastrophic failure mechanisms can include at least one selected from the group comprising ultimate tensile strength, fracture strain, and melting point. The high intensity target can have a product life in a low cycle fatigue regime range. The high intensity target can comprise a material with a melting temperature in the range of 800 C to 3,700 C.
    Type: Application
    Filed: August 17, 2021
    Publication date: March 2, 2023
    Inventors: Flavio POEHLMANN-MARTINS, William Thompson MAIN, Amir SHOJAEI