Patents by Inventor William V. Balsimo

William V. Balsimo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6613106
    Abstract: Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: September 2, 2003
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, James M. Larson, William V. Balsimo, Andrew J. Steinbach, Raymond J. Ziegler
  • Publication number: 20030041444
    Abstract: Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
    Type: Application
    Filed: August 5, 2002
    Publication date: March 6, 2003
    Applicant: 3M Innovative Properties Company
    Inventors: Mark K. Debe, James M. Larson, William V. Balsimo, Andrew J. Steinbach, Raymond J. Ziegler
  • Patent number: 6432571
    Abstract: Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: August 13, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, James M. Larson, William V. Balsimo, Andrew J. Steinbach, Raymond J. Ziegler
  • Patent number: 6428584
    Abstract: Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: August 6, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, James M. Larson, William V. Balsimo, Andrew J. Steinbach, Raymond J. Ziegler
  • Patent number: 6207251
    Abstract: A composite article including a particle-loaded fibrillated polytetrafluoroethylene web with a reinforcing screen or scrim partially embedded therein.
    Type: Grant
    Filed: July 10, 1995
    Date of Patent: March 27, 2001
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: William V. Balsimo, Lloyd R. White
  • Patent number: 6183668
    Abstract: Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
    Type: Grant
    Filed: December 10, 1998
    Date of Patent: February 6, 2001
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, James M. Larson, William V. Balsimo, Andrew J. Steinbach, Raymond J. Ziegler
  • Patent number: 5910378
    Abstract: Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: June 8, 1999
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Mark K. Debe, James M. Larson, William V. Balsimo, Andrew J. Steinbach, Raymond J. Ziegler
  • Patent number: 5464117
    Abstract: A separation-science disc dispenser (10) has a storage chamber (12) disposed normally to a base (20) that possesses a slot (24) into which a slidable member (26) resides. The storage chamber (12) contains disc units (14) that include a separation-science membrane (16) and a protective liner (18). Where the storage chamber (12) meets the base (20), there is an opening (30) in the storage chamber that allows disc units (14) to exit the storage chamber. The slidable member has a cavity (28) sized to receive a single disc unit (14) from the storage chamber (12) when the cavity (28) is in register with the opening (30). Drawing the slidable member (26) outward from slot (24) causes a single disc unit (14) to be discharged in a non-contaminated condition from the dispenser (10).
    Type: Grant
    Filed: December 1, 1994
    Date of Patent: November 7, 1995
    Assignee: Minnesota Mining and Manufacturing Company
    Inventor: William V. Balsimo
  • Patent number: 5383573
    Abstract: A separation-science disc dispenser (10) has a storage chamber (12) disposed normally to a base (20) that possesses a slot (24) into which a slidable member (26) resides. The storage chamber (12) contains disc units (14) that include a separation-science membrane (16) and a protective liner (18). Where the storage chamber (12) meets the base (20), there is an opening (30) in the storage chamber that allows disc units (14) to exit the storage chamber. The slidable member has a cavity (28) sized to receive a single disc unit (14) from the storage chamber (12) when the cavity (28) is in register with the opening (30). Drawing the slidable member (26) outward from slot (24) causes a single disc unit (14) to be discharged in a non-contaminated condition from the dispenser (10).
    Type: Grant
    Filed: November 4, 1992
    Date of Patent: January 24, 1995
    Assignee: Minnesota Mining and Manufacturing Company
    Inventor: William V. Balsimo
  • Patent number: 5366632
    Abstract: A layered filter composite comprises a filter medium, and on the upstream surface thereof a homogeneous or graded layer of nonporous spherical glass microbeads as a filter aid. A method for filtering or prefiltering a liquid mixture is disclosed wherein a layer of glass microbeads is used as a filter or filter aid. The layered filter composite is useful in analytical applications as well as in large scale industrial and remedial (clean-up) applications.
    Type: Grant
    Filed: March 3, 1993
    Date of Patent: November 22, 1994
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: William V. Balsimo, Steven J. St. Mary
  • Patent number: 5328756
    Abstract: A composite article comprising a fibrillated polytetrafluoroethylene (PTFE) matrix, electrically conductive particles, and energy expandable, electrically nonconductive hollow polymeric particles, which composite is conductive and allows for the flow of electricity and which, upon attaining a temperature which causes expansion of the expandable polymeric particles, becomes insulating and causes the flow of electricity to cease. The articles are thin and can be used as electrical circuit breaking elements.
    Type: Grant
    Filed: January 31, 1992
    Date of Patent: July 12, 1994
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Robin E. Wright, William V. Balsimo
  • Patent number: 5248428
    Abstract: A composite article comprising, in the unexpanded form, a fibrillated PTFE matrix and a combination of energy expandable hollow polymeric particles and sorptive particles, which composite, on applying energy such as steam, heat, or laser energy, provides an expanded article having increased void volume and decreased density. The expanded articles are porous and efficient articles for separation and purification applications. In flat or rolled form, the composite article can be used in separation devices.
    Type: Grant
    Filed: December 3, 1992
    Date of Patent: September 28, 1993
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Donald F. Hagen, William V. Balsimo, Robin E. Wright, Craig G. Markell
  • Patent number: 5238621
    Abstract: A composite article comprising, in the unexpanded form, a fibrillated PTFE matrix and a combination of energy expandable hollow polymeric particles and sorptive particles, which composite, on applying energy such as steam, heat, or laser energy, provides an expanded article having increased void volume and decreased density. The expanded articles are porous and efficient articles for separation and purification applications. In flat or rolled form, the composite article can be used in separation devices.
    Type: Grant
    Filed: June 26, 1992
    Date of Patent: August 24, 1993
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Donald F. Hagen, Robin E. Wright, William V. Balsimo, Craig G. Markell
  • Patent number: 5209967
    Abstract: An electrically nonconductive composite article comprising a fibrillated polytetrafluoroethylene (PTFE) matrix, electrically conductive particles, and electrically nonconductive, energy expanded polymeric particles, which composite upon application of pressure thereto becomes electrically conductive and allows for the flow of electricity through the article. The articles are thin and can be used as a pressure sensitive pad or an interconnect for an electronic component.
    Type: Grant
    Filed: January 31, 1992
    Date of Patent: May 11, 1993
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Robin E. Wright, William V. Balsimo
  • Patent number: 5207915
    Abstract: A composite article having controlled void volume and mean pore size comprises:(a) polytetrafluoroethylene (PTFE) fibril matrix, and(b) insoluble, non-swellable sorptive particles enmeshed in said matrix, the ratio of non-swellable sorptive particles to PTFE is in the range of 40:1 to 1:4 by weight, the composite article having a porosity in the range of 30 to 80 percent void volume and a mean pore size in the range of 0.3 to 5 micrometers, preferably with at least 90 percent of pores having a size less than 3.6 micrometers.The article is prepared by incorporating lubricant in the precursor admixture in an amount sufficient to exceed the lubricant sorptive capacity of the particles by at least 3 weight percent and up to an amount at which the mass loses its integrity.
    Type: Grant
    Filed: June 11, 1992
    Date of Patent: May 4, 1993
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Donald F. Hagen, Craig G. Markell, William V. Balsimo, Louis A. Errede
  • Patent number: 5147539
    Abstract: A composite article having controlled void volume and mean pore size comprises:(a) polytetrafluoroethylene (PTFE) fibril matrix, and(b) insoluble, non-swellable sorptive particles enmeshed in said matrix, the ratio of non-swellable sorptive particles to PTFE is in the range of 40:1 to 1:4 by weight, the composite article having a porosity in the range of 30 to 80 percent void volume and a mean pore size in the range of 0.3 to 5 micrometers, preferably with at least 90 percent of pores having a size less than 3.6 micrometers.The article is prepared by incorporating lubricant in the precursor admixture in an amount sufficient to exceed the lubricant sorptive capacity of the particles by at least 3 weight percent and up to an amount at which the mass loses its integrity.
    Type: Grant
    Filed: May 28, 1991
    Date of Patent: September 15, 1992
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Donald F. Hagen, Craig G. Markell, William V. Balsimo, Louis A. Errede
  • Patent number: 5071610
    Abstract: A composite article having controlled void volume and mean pore size comprises:(a) polytetrafluoroethylene (PTFE) fibril matrix, and(b) insoluble, non-swellable sorptive particles enmeshed in said matrix, the ratio of non-swellable sorptive particles to PTFE is in the range of 40:1 to 1:4 by weight, the composite article having a porosity in the range of 30 to 80 percent void volume and a mean pore size in the range of 0.3 to 5 micrometers, preferably with at least 90 percent of pores having a size less than 3.6 micrometers.The article is prepared by incorporating lubricant in the precursor admixture in an amount sufficient to exceed the lubricant sorptive capacity of the particles by at least 3 weight percent and up to an amount at which the mass loses its integrity.
    Type: Grant
    Filed: January 10, 1991
    Date of Patent: December 10, 1991
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Donald F. Hagen, Craig G. Markell, William V. Balsimo, Louis A. Errede