Patents by Inventor William Victor Alcini

William Victor Alcini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210339346
    Abstract: A method for reducing stress and distortion in a component during a friction welding process includes securing first and second workpieces of the component within an inertia welding machine such that the first and second workpieces are affixed in opposition to each other. The method also includes securing at least one annular support member at least partially around the first workpiece and/or the second workpiece at a location having a reduced cross-section as compared to remaining portions of the first workpiece and/or the second workpiece. Further, the method includes rotating the first workpiece to a predetermined rotational speed. In addition, the method includes engaging the second workpiece with the rotating first workpiece so as to generate frictional heat therebetween, thereby welding the first and second workpieces together. As such, the annular support member(s) supports the location having the reduced cross-section during welding.
    Type: Application
    Filed: July 19, 2021
    Publication date: November 4, 2021
    Inventors: Brian Christopher Galliers, Dean Fredrick Graber, William Victor Alcini
  • Patent number: 11084131
    Abstract: A method for reducing stress and distortion in a component during a friction welding process includes securing first and second workpieces of the component within an inertia welding machine such that the first and second workpieces are affixed in opposition to each other. The method also includes securing at least one annular support member at least partially around the first workpiece and/or the second workpiece at a location having a reduced cross-section as compared to remaining portions of the first workpiece and/or the second workpiece. Further, the method includes rotating the first workpiece to a predetermined rotational speed. In addition, the method includes engaging the second workpiece with the rotating first workpiece so as to generate frictional heat therebetween, thereby welding the first and second workpieces together. As such, the annular support member(s) supports the location having the reduced cross-section during welding.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: August 10, 2021
    Assignee: General Electric Company
    Inventors: Brian Christopher Galliers, Dean Fredrick Graber, William Victor Alcini
  • Publication number: 20200306898
    Abstract: A method for reducing stress and distortion in a component during a friction welding process includes securing first and second workpieces of the component within an inertia welding machine such that the first and second workpieces are affixed in opposition to each other. The method also includes securing at least one annular support member at least partially around the first workpiece and/or the second workpiece at a location having a reduced cross-section as compared to remaining portions of the first workpiece and/or the second workpiece. Further, the method includes rotating the first workpiece to a predetermined rotational speed. In addition, the method includes engaging the second workpiece with the rotating first workpiece so as to generate frictional heat therebetween, thereby welding the first and second workpieces together. As such, the annular support member(s) supports the location having the reduced cross-section during welding.
    Type: Application
    Filed: March 27, 2019
    Publication date: October 1, 2020
    Inventors: Brian Christopher Galliers, Dean Fredrick Graber, William Victor Alcini
  • Patent number: 6676894
    Abstract: A method for forming a copper-infiltrated iron powder metal article comprises compacting and sintering a predominately iron powder to form an iron-base matrix that contains between about 1 and 7 weight percent nickel and about 0.1 and 1.2 weight percent phosphorus. A copper metal is infiltrated into pores within the iron-base matrix. The product article comprises between about 2.0 and 23 weight percent copper infiltrant. Preferably, infiltration is carried out concurrently with sintering of the iron powder compact. The resulting product exhibits a particularly useful combination of mechanical properties, including high tensile strength and elongation.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: January 13, 2004
    Assignee: NTN Corporation
    Inventor: William Victor Alcini
  • Publication number: 20030221516
    Abstract: A method for forming a copper-infiltrated iron powder metal article comprises compacting and sintering a predominately iron powder to form an iron-base matrix that contains between about 1 and 7 weight percent nickel and about 0.1 and 1.2 weight percent phosphorus. A copper metal is infiltrated into pores within the iron-base matrix. The product article comprises between about 2.0 and 23 weight percent copper infiltrant. Preferably, infiltration is carried out concurrently with sintering of the iron powder compact. The resulting product exhibits a particularly useful combination of mechanical properties, including high tensile strength and elongation.
    Type: Application
    Filed: May 29, 2002
    Publication date: December 4, 2003
    Inventor: William Victor Alcini
  • Patent number: 6551373
    Abstract: In accordance with the teachings of the present invention a structural member is formed by iron-phosphorous alloy powder having about 0.01 wt % to 1.2 wt % of phosphorous by weight of the powder. The powder is then pressed to the desired matrix density and copper infiltrated such that copper is present in the amount of 1.96 wt % to 23.08 wt %, by weight of the weight of the structural member. The final density of the structured member is in a range of 6.1 to 8.1 g/cc. The structural member formed using the sintered powder metal of the present invention has superior elongation (as much as 10.3% elongation), impact strength (159 N-m charpy unnotched), tensile strength (530 MPa), and modulus (166 GPa) as compared to standard density powder metal.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: April 22, 2003
    Assignees: NTN Corporation, Metco Industries, Inc.
    Inventors: William Victor Alcini, Thomas George Fleming
  • Publication number: 20020027218
    Abstract: In accordance with the teachings of the present invention a structural member is formed by iron-phosphorous alloy powder having about 0.0l wt % to 1.2 wt % of phosphorous by weight of the powder. The powder is then pressed to the desired matrix density and copper infiltrated such that copper is present in the amount of 1.96 wt % to 23.08 wt %, by weight of the weight of the structural member. The final density of the structured member is in a range of 6.1 to 8.1 g/cc. The structural member formed using the sintered powder metal of the present invention has superior elongation (as much as 10.3% elongation), impact strength (159 N-m charpy unnotched), tensile strength (530 MPa), and modulus (166 GPa) as compared to standard density powder metal.
    Type: Application
    Filed: April 26, 2001
    Publication date: March 7, 2002
    Inventors: William Victor Alcini, Thomas George Fleming