Patents by Inventor William Winstrom
William Winstrom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12256986Abstract: The present disclosure provides systems and methods for detecting leakage currents in radio-frequency (RF) ablation systems. An RF generator may be configured to disable an electrical return path from a patient to a ground terminal. The RF generator may also be configured to apply an electrical signal to an electrode that is positioned to be in proximity to target tissue of the patient. The RF generator may be further configured to measure a leakage impedance while the electrical return path is disabled and the electrical signal is applied to the electrode. The RF generator may also be configured to control RF ablation therapy based, at least in part, on the measured leakage impedance. Other features are also claimed and described.Type: GrantFiled: July 16, 2021Date of Patent: March 25, 2025Assignee: Advanced Neuromodulation Systems, Inc.Inventors: Seil Oh, Binesh Balasingh, William Winstrom, Simran Singh
-
Publication number: 20250001189Abstract: A method is provided for establishing a communication session with an implantable medical device (“IMD”). The method includes configuring an IMD and an external device to communicate with one another through a protocol that utilizes a dedicated advertisement channel. The advertisement period and the scan period of the protocol are independent of one another such that the advertisement and scan periods at least partially overlap intermittently after a number of cycles. When the external device detects one of the advertisement notices, the method includes establishing a communications link between the external device and the IMD.Type: ApplicationFiled: September 12, 2024Publication date: January 2, 2025Inventors: Reza Shahandeh, Richard Williamson, Gabriel Mouchawar, Brent Croft, William Winstrom, Robert McCormick, Jorge N. Amely-Velez, Thanh Tieu, Ali Dianaty, Samir Shah, Yongjian Wu
-
Patent number: 12144534Abstract: An ablation system and method are provided. The ablation system includes an ablation power generator configured to generate ablation energy. An active electrode is coupled to the ablation power generator and is configured to deliver the ablation energy to ablation tissue of interest during an ablation procedure. A return electrode arrangement (REA) is coupled to the ablation power generator and is configured to engage remote tissue, at a remote location from the ablation tissue of interest, to provide a return path during the ablation procedure. The REA transitions between an engaged and disengaged state with the remote tissue. An electrode-tissue engagement (ETE) circuit includes a resonant circuit coupled to the REA. The ETE circuit is configured to detect when the REA is in the engaged state or disengaged state.Type: GrantFiled: June 19, 2019Date of Patent: November 19, 2024Assignee: Advanced Neuromodulation Systems, Inc.Inventor: William Winstrom
-
Patent number: 12115375Abstract: A method is provided for establishing a communication session with an implantable medical device (“IMD”). The method includes configuring an IMD and an external device to communicate with one another through a protocol that utilizes a dedicated advertisement channel. The advertisement period and the scan period of the protocol are independent of one another such that the advertisement and scan periods at least partially overlap intermittently after a number of cycles. When the external device detects one of the advertisement notices, the method includes establishing a communications link between the external device and the IMD.Type: GrantFiled: March 9, 2023Date of Patent: October 15, 2024Assignee: Pacesetter, Inc.Inventors: Reza Shahandeh, Richard Williamson, Gabriel Mouchawar, Brent Croft, William Winstrom, Robert McCormick, Jorge N. Amely-Velez, Thanh Tieu, Ali Dianaty, Samir Shah, Yongjian Wu
-
Publication number: 20240325765Abstract: The present disclosure provides systems and methods for wirelessly charging an implantable medical device. An external charging device includes a coil, signal generating circuitry to drive current through the coil at a charging frequency to induce current in a second coil in the implantable medical device, monitoring circuitry to generate an output signal to monitor charging operations, and a comb filter. The comb filter is configured to apply filtering to the output signal to remove noise from the output signal, wherein the filtering is applied based on the charging frequency. The external charging device is configured to process the filtered output signal to detect a circuit state of charging circuitry of the implantable medical device during charging operations, and the external charging device is configured to vary the charging frequency based, in part, on detection of the circuit state of the charging circuitry of the implantable medical device.Type: ApplicationFiled: March 28, 2024Publication date: October 3, 2024Inventors: Luis Ortiz Hernandez, Santhosh Seetharaman, Seil Oh, Edward Lundberg, Nicholas Sachs, Hongxuan Zhang, William Winstrom
-
Patent number: 11969605Abstract: The present disclosure provides systems and methods for wirelessly charging an implantable medical device. An external charging device includes a coil, signal generating circuitry to drive current through the coil at a charging frequency to induce current in a second coil in the implantable medical device, monitoring circuitry to generate an output signal to monitor charging operations, and a comb filter. The comb filter is configured to apply filtering to the output signal to remove noise from the output signal, wherein the filtering is applied based on the charging frequency. The external charging device is configured to process the filtered output signal to detect a circuit state of charging circuitry of the implantable medical device during charging operations, and the external charging device is configured to vary the charging frequency based, in part, on detection of the circuit state of the charging circuitry of the implantable medical device.Type: GrantFiled: August 26, 2021Date of Patent: April 30, 2024Assignee: Advanced Neuromodulation Systems, Inc.Inventors: Luis Ortiz Hernandez, Santhosh Seetharaman, Seil Oh, Edward Lundberg, Nicholas Sachs, Hongxuan Zhang, William Winstrom
-
Publication number: 20230218909Abstract: A method is provided for establishing a communication session with an implantable medical device (“IMD”). The method includes configuring an IMD and an external device to communicate with one another through a protocol that utilizes a dedicated advertisement channel. The advertisement period and the scan period of the protocol are independent of one another such that the advertisement and scan periods at least partially overlap intermittently after a number of cycles. When the external device detects one of the advertisement notices, the method includes establishing a communications link between the external device and the IMD.Type: ApplicationFiled: March 9, 2023Publication date: July 13, 2023Inventors: Reza Shahandeh, Richard Williamson, Gabriel Mouchawar, Brent Croft, William Winstrom, Robert McCormick, Jorge N. Amely-Velez, Thanh Tieu, Ali Dianaty, Samir Shah, Yongjian Wu
-
Patent number: 11633609Abstract: A method is provided for establishing a communication session with an implantable medical device (“IMD”). The method includes configuring an IMD and an external device to communicate with one another through a protocol that utilizes a dedicated advertisement channel. The advertisement period and the scan period of the protocol are independent of one another such that the advertisement and scan periods at least partially overlap intermittently after a number of cycles. When the external device detects one of the advertisement notices, the method includes establishing a communications link between the external device and the IMD.Type: GrantFiled: November 2, 2020Date of Patent: April 25, 2023Assignee: Pacesetter, Inc.Inventors: Reza Shahandeh, Richard Williamson, Gabriel Mouchawar, Brent Croft, William Winstrom, Robert McCormick, Jorge N. Amely-Velez, Thanh Tieu, Ali Dianaty, Samir Shah, Yongjian Wu
-
Publication number: 20230116095Abstract: A charging energy control system includes an implantable medical device (IMD) and an external charger for effectuating wireless power transfer. The IMD receives charging energy to recharge a battery during an ON period and rejects the charging energy during an OFF period. A series switch is disposed between the IMD’s coil and rectifier circuitry that is controlled by voltage regulation circuitry operative to generate a clamp control signal configured to detune the coil in the OFF state.Type: ApplicationFiled: December 9, 2022Publication date: April 13, 2023Inventor: William Winstrom
-
Patent number: 11617619Abstract: Disclosed herein is an RF ablation system including a plurality of electrodes, a ground pad, and a signal generator. The electrodes are positioned at respective tissue sites within a patient's body, and the ground pad is positioned on the patient's body. The signal generator is coupled to the ground pad and the electrodes via corresponding channels including a selected channel and unselected channels. The signal generator commutates switching circuits for the corresponding channels to close the selected channel and to open the unselected channels, and measures a first impedance over the selected channel. The signal generator commutates the switching circuits to close the selected channel and the unselected channels, and then measures a second impedance. The signal generator computes a difference between the first and second impedances, and determines the ground pad has at least a poor electrical connection to the patient's body when the difference exceeds a threshold.Type: GrantFiled: November 4, 2020Date of Patent: April 4, 2023Assignee: Advanced Neuromodulation Systems, Inc.Inventors: Seil Oh, Binesh Balasingh, William Winstrom
-
Patent number: 11547862Abstract: A charging energy control system includes an implantable medical device (IMD) and an external charger for effectuating wireless power transfer. The IMD receives charging energy to recharge a battery during an ON period and rejects the charging energy during an OFF period. A series switch is disposed between the IMD's coil and rectifier circuitry that is controlled by voltage regulation circuitry operative to generate a clamp control signal configured to detune the coil in the OFF state.Type: GrantFiled: November 6, 2019Date of Patent: January 10, 2023Assignee: ADVANCED NEUROMODULATION SYSTEMS, INC.Inventor: William Winstrom
-
Publication number: 20220193426Abstract: The present disclosure provides systems and methods for wirelessly charging an implantable medical device. An external charging device includes a coil, signal generating circuitry to drive current through the coil at a charging frequency to induce current in a second coil in the implantable medical device, monitoring circuitry to generate an output signal to monitor charging operations, and a comb filter. The comb filter is configured to apply filtering to the output signal to remove noise from the output signal, wherein the filtering is applied based on the charging frequency. The external charging device is configured to process the filtered output signal to detect a circuit state of charging circuitry of the implantable medical device during charging operations, and the external charging device is configured to vary the charging frequency based, in part, on detection of the circuit state of the charging circuitry of the implantable medical device.Type: ApplicationFiled: August 26, 2021Publication date: June 23, 2022Inventors: Luis Ortiz Hernandez, Santhosh Seetharaman, Seil Oh, Edward Lundberg, Nicholas Sachs, Hongxuan Zhang, William Winstrom
-
Publication number: 20220183753Abstract: The present disclosure provides systems and methods for detecting leakage currents in radio-frequency (RF) ablation systems. An RF generator may be configured to disable an electrical return path from a patient to a ground terminal. The RF generator may also be configured to apply an electrical signal to an electrode that is positioned to be in proximity to target tissue of the patient. The RF generator may be further configured to measure a leakage impedance while the electrical return path is disabled and the electrical signal is applied to the electrode. The RF generator may also be configured to control RF ablation therapy based, at least in part, on the measured leakage impedance. Other features are also claimed and described.Type: ApplicationFiled: July 16, 2021Publication date: June 16, 2022Inventors: Seil Oh, Binesh Balasingh, William Winstrom, Simran Singh
-
Publication number: 20220133406Abstract: Disclosed herein is an RF ablation system including a plurality of electrodes, a ground pad, and a signal generator. The electrodes are positioned at respective tissue sites within a patient's body, and the ground pad is positioned on the patient's body. The signal generator is coupled to the ground pad and the electrodes via corresponding channels including a selected channel and unselected channels. The signal generator commutates switching circuits for the corresponding channels to close the selected channel and to open the unselected channels, and measures a first impedance over the selected channel. The signal generator commutates the switching circuits to close the selected channel and the unselected channels, and then measures a second impedance. The signal generator computes a difference between the first and second impedances, and determines the ground pad has at least a poor electrical connection to the patient's body when the difference exceeds a threshold.Type: ApplicationFiled: November 4, 2020Publication date: May 5, 2022Inventors: Seil Oh, Binesh Balasingh, William Winstrom
-
Patent number: 11007370Abstract: A method is provided for establishing a communication session with an implantable medical device (“IMD”). The method includes configuring an IMD and an external device to communicate with one another through a protocol that utilizes a dedicated advertisement channel. The advertisement period and the scan period of the protocol are independent of one another such that the advertisement and scan periods at least partially overlap intermittently after a number of cycles. When the external device detects one of the advertisement notices, the method includes establishing a communications link between the external device and the IMD.Type: GrantFiled: January 2, 2018Date of Patent: May 18, 2021Assignee: PACESETTER, INC.Inventors: Reza Shahandeh, Richard Williamson, Gabriel A. Mouchawar, Brent Croft, William Winstrom, Robert McCormick, Jorge N. Amely-Velez, Thanh Tieu, Ali Dianaty, Samir Shah, Yongjian Wu
-
Publication number: 20210046323Abstract: A method is provided for establishing a communication session with an implantable medical device (“IMD”). The method includes configuring an IMD and an external device to communicate with one another through a protocol that utilizes a dedicated advertisement channel. The advertisement period and the scan period of the protocol are independent of one another such that the advertisement and scan periods at least partially overlap intermittently after a number of cycles. When the external device detects one of the advertisement notices, the method includes establishing a communications link between the external device and the IMD.Type: ApplicationFiled: November 2, 2020Publication date: February 18, 2021Inventors: Reza Shahandeh, Richard Williamson, Gabriel Mouchawar, Brent Croft, William Winstrom, Robert McCormick, Jorge N. Amely-Velez, Thanh Tieu, Ali Dianaty, Samir Shah, Yongjian Wu
-
Publication number: 20200323577Abstract: An ablation system and method are provided. The ablation system includes an ablation power generator configured to generate ablation energy. An active electrode is coupled to the ablation power generator and is configured to deliver the ablation energy to ablation tissue of interest during an ablation procedure. A return electrode arrangement (REA) is coupled to the ablation power generator and is configured to engage remote tissue, at a remote location from the ablation tissue of interest, to provide a return path during the ablation procedure. The REA transitions between an engaged and disengaged state with the remote tissue. An electrode-tissue engagement (ETE) circuit includes a resonant circuit coupled to the REA. The ETE circuit is configured to detect when the REA is in the engaged state or disengaged state.Type: ApplicationFiled: June 19, 2019Publication date: October 15, 2020Inventor: William Winstrom
-
Publication number: 20200324126Abstract: A charging energy control system includes an implantable medical device (IMD) and an external charger for effectuating wireless power transfer. The IMD receives charging energy to recharge a battery during an ON period and rejects the charging energy during an OFF period. A series switch is disposed between the IMD's coil and rectifier circuitry that is controlled by voltage regulation circuitry operative to generate a clamp control signal configured to detune the coil in the OFF state.Type: ApplicationFiled: November 6, 2019Publication date: October 15, 2020Inventor: William Winstrom
-
Publication number: 20190381326Abstract: A method is provided for establishing a communication session with an implantable medical device (“IMD”). The method includes configuring an IMD and an external device to communicate with one another through a protocol that utilizes a dedicated advertisement channel. The advertisement period and the scan period of the protocol are independent of one another such that the advertisement and scan periods at least partially overlap intermittently after a number of cycles. When the external device detects one of the advertisement notices, the method includes establishing a communications link between the external device and the IMD.Type: ApplicationFiled: January 2, 2018Publication date: December 19, 2019Inventors: Reza Shahandeh, Richard Williamson, Gabriel A. Mouchawar, Brent Croft, William Winstrom, Robert McCormick, Jorge N. Amely-Velez, Thanh Tieu, Ali Dianaty, Samir Shah, Yongjian Wu
-
Patent number: 9855433Abstract: A method is provided for establishing a communication session with an implantable medical device (“IMD”). The method includes configuring an IMD and an external device to communicate with one another through a protocol that utilizes a dedicated advertisement channel. The advertisement period and the scan period of the protocol are independent of one another such that the advertisement and scan periods at least partially overlap intermittently after a number of cycles. When the external device detects one of the advertisement notices, the method includes establishing a communications link between the external device and the IMD.Type: GrantFiled: February 15, 2017Date of Patent: January 2, 2018Assignee: Pacesetter, IncInventors: Reza Shahandeh, Richard Williamson, Gabriel A. Mouchawar, Brent Croft, William Winstrom, Robert McCormick, Jorge N. Amely-Velez, Thanh Tieu, Ali Dianaty, Samir Shah, Yongjian Wu