Patents by Inventor Willy Chin

Willy Chin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11930818
    Abstract: Techniques regarding star polymers with enhanced antimicrobial functionality are provided. For example, a polymer is provided that can comprise a core that can have a singlet oxygen generator and that can generate a singlet oxygen species upon irradiation with light. The polymer can also comprise a plurality of polycarbonate arms covalently bonded to the core. The plurality of polycarbonate arms can be degradable and can comprise a cation. Further, the plurality of polycarbonate arms can have antimicrobial functionality.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: March 19, 2024
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Victoria A. Piunova, Noah Frederick Fine Nathel, James L. Hedrick, Yi Yan Yang, Willy Chin, Zhi Xiang Voo
  • Patent number: 11690380
    Abstract: Antimicrobial cationic polycarbonates and polyurethanes have been prepared comprising one or more pendent guanidinium and/or isothiouronium groups. Additionally, antimicrobial particles were prepared having a silica core linked to surface groups comprising a guanidinium and/or isothiouronium group. The cationic polymers and cationic particles can be potent antimicrobial agents against Gram-negative microbes, Gram-positive microbes, and/or fungi.
    Type: Grant
    Filed: November 16, 2019
    Date of Patent: July 4, 2023
    Assignees: Coral Bay II, LLC, Agency For Science, Technology And Research
    Inventors: Willy Chin, James L. Hedrick, Nor Lizawati Ibrahim, Ashlynn L. Z. Lee, Robert J. Ono, Qingxing Xu, Yi Yan Yang
  • Patent number: 10980234
    Abstract: Antimicrobial cationic polycarbonates and polyurethanes have been prepared comprising one or more pendent guanidinium and/or isothiouronium groups. Additionally, antimicrobial particles were prepared having a silica core linked to surface groups comprising a guanidinium and/or isothiouronium group. The cationic polymers and cationic particles can be potent antimicrobial agents against Gram-negative microbes, Gram-positive microbes, and/or fungi.
    Type: Grant
    Filed: November 16, 2019
    Date of Patent: April 20, 2021
    Assignees: Coral Bay II, LLC, Agency For Science, Technology And Research
    Inventors: Willy Chin, James L. Hedrick, Ashlynn L. Z. Lee, Robert J. Ono, Qingxing Xu, Yi Yan Yang
  • Patent number: 10779539
    Abstract: Antimicrobial cationic polycarbonates and polyurethanes have been prepared comprising one or more pendent guanidinium and/or isothiouronium groups. Additionally, antimicrobial particles were prepared having a silica core linked to surface groups comprising a guanidinium and/or isothiouronium group. The cationic polymers and cationic particles can be potent antimicrobial agents against Gram-negative microbes, Gram-positive microbes, and/or fungi.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: September 22, 2020
    Assignees: Coral Bay II, LLC., Agency For Science, Technology And Research
    Inventors: Willy Chin, James L. Hedrick, Ashlynn L. Z. Lee, Robert J. Ono, Yi Yan Yang, Qingxing Xu
  • Patent number: 10702610
    Abstract: Polythioaminal polymers are made from hexahydrotriazine precursors and dithiol precursors. The precursors are blended together and subjected to mild heating to make the polymers. The polymers have the general structure wherein each R1 is independently an organic or hetero-organic group, each R2 is independently a substituent having molecular weight no more than about 120 Daltons, X and Z are each a sulfur-bonded species, at least one of X and Z is not hydrogen, and n is an integer greater than or equal to 1. X and Z may be hydrogen or a functional group, such as a thiol-reactive group. The reactive thiol groups of the polythioaminal may be used to attach thiol-reactive end capping species. By using water soluble or water degradable dithiols, such as polyether dithiols, water soluble polythioaminals may be made. Some such polymers may be used to deliver therapeutics with non-toxic aqueous degradation products.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: July 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Willy Chin, Jeannette M. Garcia, James L. Hedrick, Xiyu Ke, Rudy J. Wojtecki, Yi Yan Yang
  • Patent number: 10682313
    Abstract: The subject matter of this invention relates to block copolymers (BCPs) and, more particularly, to block copolymers capable of self-assembly into nanoparticles for the delivery of hydrophobic cargos. The BCPs include a hydrophobic block that contains a thioether functional group that is susceptible to oxidation, transforming the solubility of the block from hydrophobic to hydrophilic, thereby releasing the hydrophobic cargo of the nanoparticle.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: June 16, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, INSTITUTE OF BIOENGINEERING AND NANOTECHNOLOGY, BIOMEDICAL SCIENCES INSTITUTE
    Inventors: Dylan Boday, Willy Chin, Mareva B. Fevre, Jeannette Garcia, James L. Hedrick, Eunice Leong, Nathaniel H. Park, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20200146296
    Abstract: Techniques regarding star polymers with enhanced antimicrobial functionality are provided. For example, a polymer is provided that can comprise a core that can have a singlet oxygen generator and that can generate a singlet oxygen species upon irradiation with light. The polymer can also comprise a plurality of polycarbonate arms covalently bonded to the core. The plurality of polycarbonate arms can be degradable and can comprise a cation. Further, the plurality of polycarbonate arms can have antimicrobial functionality.
    Type: Application
    Filed: January 9, 2020
    Publication date: May 14, 2020
    Inventors: Victoria A. Piunova, Noah Frederick Fine Nathel, James L. Hedrick, Yi Yan Yang, Willy Chin, Zhi Xiang Voo
  • Publication number: 20200085059
    Abstract: Antimicrobial cationic polycarbonates and polyurethanes have been prepared comprising one or more pendent guanidinium and/or isothiouronium groups. Additionally, antimicrobial particles were prepared having a silica core linked to surface groups comprising a guanidinium and/or isothiouronium group. The cationic polymers and cationic particles can be potent antimicrobial agents against Gram-negative microbes, Gram-positive microbes, and/or fungi.
    Type: Application
    Filed: November 16, 2019
    Publication date: March 19, 2020
    Inventors: Willy Chin, James L. Hedrick, Nor Lizawati Ibrahim, Ashlynn L.Z. Lee, Robert J. Ono, Qingxing Xu, Yi Yan Yang
  • Publication number: 20200077660
    Abstract: Antimicrobial cationic polycarbonates and polyurethanes have been prepared comprising one or more pendent guanidinium and/or isothiouronium groups. Additionally, antimicrobial particles were prepared having a silica core linked to surface groups comprising a guanidinium and/or isothiouronium group. The cationic polymers and cationic particles can be potent antimicrobial agents against Gram-negative microbes, Gram-positive microbes, and/or fungi.
    Type: Application
    Filed: November 16, 2019
    Publication date: March 12, 2020
    Inventors: Willy Chin, James L. Hedrick, Nor Lizawati Ibrahim, Ashlynn L. Z. Lee, Robert J. Ono, Qingxing Xu, Yi Yan Yang
  • Patent number: 10561146
    Abstract: Techniques regarding star polymers with enhanced antimicrobial functionality are provided. For example, a polymer is provided that can comprise a core that can have a singlet oxygen generator and that can generate a singlet oxygen species upon irradiation with light. The polymer can also comprise a plurality of polycarbonate arms covalently bonded to the core. The plurality of polycarbonate arms can be degradable and can comprise a cation. Further, the plurality of polycarbonate arms can have antimicrobial functionality.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: February 18, 2020
    Assignee: International Business Machines Corporation
    Inventors: Willy Chin, James L. Hedrick, Noah Frederick Fine Nathel, Victoria A. Piunova, Zhi Xiang Voo, Yi Yan Yang
  • Patent number: 10457772
    Abstract: The present disclosure relates to polythioaminals with applications as carriers or delivery vehicles for therapeutic agents or other small molecule cargo. Polythioaminal block copolymer coupled to a therapeutic agent is a polymer-therapeutic conjugate that exhibits higher stability and longer life time in aqueous environments. The polythioaminal block copolymer coupled to a therapeutic agent can be synthesized by reacting hexahydrotriazines with a hydrophobic block precursor, a hydrophilic block precursor, a particle stabilizing segment precursor, and a cargo, such as a therapeutic agent, in a one pot synthesis. The ease of synthesizing the resulting polythioaminal block copolymer coupled to the therapeutic agent while offering the extended stability and polymer life time in aqueous environments make the polythioaminal block copolymer particularly attractive for therapeutic carriers.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: October 29, 2019
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Willy Chin, Jeannette M. Garcia, James L. Hedrick, Eunice Leong Jiayu, Shrinivas Venkataraman, Zhi Xiang Voo, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20190307684
    Abstract: The subject matter of this invention relates to block copolymers (BCPs) and, more particularly, to block copolymers capable of self-assembly into nanoparticles for the delivery of hydrophobic cargos. The BCPs include a hydrophobic block that contains a thioether functional group that is susceptible to oxidation, transforming the solubility of the block from hydrophobic to hydrophilic, thereby releasing the hydrophobic cargo of the nanoparticle.
    Type: Application
    Filed: June 25, 2019
    Publication date: October 10, 2019
    Inventors: Dylan Boday, Willy Chin, Mareva B. Fevre, Jeannette Garcia, James L. Hedrick, Eunice Leong, Nathaniel H. Park, Rudy J. Wojtecki, Yi Yan Yang
  • Patent number: 10376468
    Abstract: The subject matter of this invention relates to block copolymers (BCPs) and, more particularly, to block copolymers capable of self-assembly into nanoparticles for the delivery of hydrophobic cargos. The BCPs include a hydrophobic block that contains a thioether functional group that is susceptible to oxidation, transforming the solubility of the block from hydrophobic to hydrophilic, thereby releasing the hydrophobic cargo of the nanoparticle.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: August 13, 2019
    Assignees: International Business Machines Corporation, Institute of Bioengineering and Nanotechnology, Biomedical Sciences Institute
    Inventors: Dylan Boday, Willy Chin, Mareva B. Fevre, Jeannette Garcia, James L. Hedrick, Eunice Leong, Nathaniel H. Park, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20190167584
    Abstract: The subject matter of this invention relates to block copolymers (BCPs) and, more particularly, to block copolymers capable of self-assembly into nanoparticles for the delivery of hydrophobic cargos. The BCPs include a hydrophobic block that contains a thioether functional group that is susceptible to oxidation, transforming the solubility of the block from hydrophobic to hydrophilic, thereby releasing the hydrophobic cargo of the nanoparticle.
    Type: Application
    Filed: December 5, 2017
    Publication date: June 6, 2019
    Inventors: Dylan Boday, Willy Chin, Mareva B. Fevre, Jeannette Garcia, James L. Hedrick, Eunice Leong, Nathaniel H. Park, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20190159456
    Abstract: Techniques regarding star polymers with enhanced antimicrobial functionality are provided. For example, a polymer is provided that can comprise a core that can have a singlet oxygen generator and that can generate a singlet oxygen species upon irradiation with light. The polymer can also comprise a plurality of polycarbonate arms covalently bonded to the core. The plurality of polycarbonate arms can be degradable and can comprise a cation. Further, the plurality of polycarbonate arms can have antimicrobial functionality.
    Type: Application
    Filed: November 28, 2017
    Publication date: May 30, 2019
    Inventors: Willy Chin, James L. Hedrick, Noah Frederick Fine Nathel, Victoria A. Piunova, Zhi Xiang Voo, Yi Yan Yang
  • Publication number: 20190077909
    Abstract: The present disclosure relates to polythioaminals with applications as carriers or delivery vehicles for therapeutic agents or other small molecule cargo. Polythioaminal block copolymer coupled to a therapeutic agent is a polymer-therapeutic conjugate that exhibits higher stability and longer life time in aqueous environments. The polythioaminal block copolymer coupled to a therapeutic agent can be synthesized by reacting hexahydrotriazines with a hydrophobic block precursor, a hydrophilic block precursor, a particle stabilizing segment precursor, and a cargo, such as a therapeutic agent, in a one pot synthesis. The ease of synthesizing the resulting polythioaminal block copolymer coupled to the therapeutic agent while offering the extended stability and polymer life time in aqueous environments make the polythioaminal block copolymer particularly attractive for therapeutic carriers.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 14, 2019
    Inventors: Dylan J. BODAY, Willy CHIN, Jeannette M. GARCIA, James L. HEDRICK, Eunice Leong JIAYU, Shrinivas VENKATARAMAN, Zhi Xiang VOO, Rudy J. WOJTECKI, Yi Yan YANG
  • Publication number: 20180369397
    Abstract: Polythioaminal polymers are made from hexahydrotriazine precursors and dithiol precursors. The precursors are blended together and subjected to mild heating to make the polymers. The polymers have the general structure wherein each R1 is independently an organic or hetero-organic group, each R2 is independently a substituent having molecular weight no more than about 120 Daltons, X and Z are each a sulfur-bonded species, at least one of X and Z is not hydrogen, and n is an integer greater than or equal to 1. X and Z may be hydrogen or a functional group, such as a thiol-reactive group. The reactive thiol groups of the polythioaminal may be used to attach thiol-reactive end capping species. By using water soluble or water degradable dithiols, such as polyether dithiols, water soluble polythioaminals may be made. Some such polymers may be used to deliver therapeutics with non-toxic aqueous degradation products.
    Type: Application
    Filed: August 29, 2018
    Publication date: December 27, 2018
    Inventors: James HEDRICK, Dylan BODAY, Jeannette GARCIA, Willy CHIN, Xiyu KE, Rudy WOJTECKI, Yi YANG
  • Patent number: 10080806
    Abstract: Polythioaminal polymers are made from hexahydrotriazine precursors and dithiol precursors. The precursors are blended together and subjected to mild heating to make the polymers. The polymers have the general structure wherein each R1 is independently an organic or hetero-organic group, each R2 is independently a substituent having molecular weight no more than about 120 Daltons, X and Z are each a sulfur-bonded species, at least one of X and Z is not hydrogen, and n is an integer greater than or equal to 1. X and Z may be hydrogen or a functional group, such as a thiol-reactive group. The reactive thiol groups of the polythioaminal may be used to attach thiol-reactive end capping species. By using water soluble or water degradable dithiols, such as polyether dithiols, water soluble polythioaminals may be made. Some such polymers may be used to deliver therapeutics with non-toxic aqueous degradation products.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: September 25, 2018
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Willy Chin, Jeannette M. Garcia, James L. Hedrick, Xiyu Ke, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20180228835
    Abstract: Antimicrobial cationic polymers having one or two cationic polycarbonate chains were prepared by organocatalyzed ring opening polymerization. One antimicrobial cationic polymer has a polymer chain consisting essentially of cationic carbonate repeat units linked to one or two end groups. The end groups can comprise a covalently bound form of biologically active compound such as cholesterol. Other antimicrobial cationic polymers have a random copolycarbonate chain comprising a minor mole fraction of hydrophobic repeat units bearing a covalently bound form of a vitamin E and/or vitamin D2. The cationic polymers exhibit high activity and selectivity against Gram-negative and Gram-positive microbes and fungi.
    Type: Application
    Filed: April 17, 2018
    Publication date: August 16, 2018
    Inventors: Willy Chin, Daniel J. Coady, Richard A. Dipietro, Amanda C. Engler, James L. Hedrick, Ashlynn L. Z. Lee, Victor W. L. Ng, Zhan-Yuin Ong, Yi Yan Yang
  • Patent number: 9999633
    Abstract: Antimicrobial cationic polymers having one or two cationic polycarbonate chains were prepared by organocatalyzed ring opening polymerization. One antimicrobial cationic polymer has a polymer chain consisting essentially of cationic carbonate repeat units linked to one or two end groups. The end groups can comprise a covalently bound form of biologically active compound such as cholesterol. Other antimicrobial cationic polymers have a random copolycarbonate chain comprising a minor mole fraction of hydrophobic repeat units bearing a covalently bound form of a vitamin E and/or vitamin D2. The cationic polymers exhibit high activity and selectivity against Gram-negative and Gram-positive microbes and fungi.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: June 19, 2018
    Assignees: International Business Machines Corporation, Agency For Science, Technology And Research
    Inventors: Willy Chin, Daniel J. Coady, Amanda C. Engler, James L. Hedrick, Ashlynn L. Z. Lee, Victor W. L. Ng, Zhan-Yuin Ong, Yi Yan Yang