Patents by Inventor Willy Klier

Willy Klier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210370801
    Abstract: A method for determining an adjustment of a vehicle seat in a vehicle having at least one occupant-protection arrangement, in which an occupant type of an occupant is ascertained when the occupant enters the vehicle, and an adjustment of the vehicle seat is determined as a function of the ascertained occupant type, so that the determined occupant type is optimally aligned with respect to the at least one occupant-protection arrangement of the vehicle.
    Type: Application
    Filed: October 14, 2016
    Publication date: December 2, 2021
    Inventors: Andreas Schulz, Willy Klier, Armin Koehler, Heiko Freienstein
  • Publication number: 20160264130
    Abstract: An adaptive control adjusts thresholds in a vehicle stability control in response to video camera data, GPS data and weather data indicating that vehicle road conditions are not ideal. Video data determines mue (coefficient of friction) and type of road. Weather data includes temperature, visibility, precipitation and wind velocity. A human machine interface manually overrides the adaptive control in response to a user input.
    Type: Application
    Filed: May 26, 2016
    Publication date: September 15, 2016
    Inventors: Willy Klier, Ravi Bhadange
  • Patent number: 9387851
    Abstract: An adaptive control adjusts thresholds in a vehicle stability control in response to video camera data, GPS data and weather data indicating that vehicle road conditions are not ideal. Video data determines mue (coefficient of friction) and type of road. Weather data includes temperature, visibility, precipitation and wind velocity. A human machine interface manually overrides the adaptive control in response to a user input.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: July 12, 2016
    Assignee: Robert Bosch GmbH
    Inventors: Willy Klier, Ravi Bhadange
  • Publication number: 20160059851
    Abstract: An adaptive control adjusts thresholds in a vehicle stability control in response to video camera data, GPS data and weather data indicating that vehicle road conditions are not ideal. Video data determines mue (coefficient of friction) and type of road. Weather data includes temperature, visibility, precipitation and wind velocity. A human machine interface manually overrides the adaptive control in response to a user input.
    Type: Application
    Filed: August 28, 2014
    Publication date: March 3, 2016
    Inventors: Willy Klier, Ravi Bhadange
  • Patent number: 8935037
    Abstract: A controller for determining whether a previously-determined vehicle steering sensor malfunction still exists. The controller includes an electronic, non-volatile memory, and an electronic processing unit connected to the electronic, non-volatile memory. The electronic processing module includes a malfunction monitoring module, a failure handling module, and a signal checking module. The malfunction monitoring module monitors the operation of at least one vehicle sensor and generates a fault signal when the at least one sensor malfunctions. The failure handling module causes drive cycle information and the fault information to be stored in the electronic, non-volatile memory. The signal checking module performs a signal check on information from the at least one sensor.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: January 13, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Henrik Bechtler, Ravi Bhadange, Nachiket Patil, Takeshi Tokonaga, Stefan Mallmann, Michael Schwab, Dietmar Stapel, Willy Klier, Joerg Eesmann
  • Patent number: 8874306
    Abstract: Systems and methods of monitoring redundant vacuum sensors in the same vacuum chamber of a braking system to determine when an error condition is present in a braking system. The braking system includes a first sensor positioned in a chamber of the braking system and a second sensor positioned in the same chamber. A first reading is received from the first sensor and a second reading is received from the second sensor. A difference between the first reading and the second reading is determined. An error condition is indicated when the difference between the first reading and the second reading is greater than a threshold.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: October 28, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Willy Klier, Kenta Mineo, Scott Amenson
  • Patent number: 8754764
    Abstract: A mechanism for determining whether a malfunctioning pressure sensor has returned to a normal or acceptable operating range. The mechanism includes controllers and methods that perform a “good check” on the sensor to determine whether the sensor has returned to normal or acceptable operation after a malfunction has been detected. When a previously-malfunctioning sensor passes the “good check,” warning lights (or tell-tale) indicators are shut off and systems that relied upon information from the malfunctioning sensor return to normal operation.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: June 17, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Henrik Bechtler, Ravi Bhadange, Nachiket Patil, Takeshi Tokonaga, Stefan Mallmann, Michael Schwab, Dietmar Stapel, Willy Klier, Joerg Eesmann
  • Patent number: 8738219
    Abstract: A controller for indicating whether a previously-detected, acceleration-sensor malfunction no longer exists. The controller includes an electronic memory and an electronic processing unit connected to the electronic memory. The electronic processing module includes a malfunction monitoring module, a failure handling module, and a signal checking module. The signal checking module performs a signal check after the malfunction monitoring module generates the fault signal. The signal check includes executing a signal check function with a longitudinal acceleration signal. Also disclosed is a vehicle including the controller, and a method executed by the controller.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: May 27, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Henrik Bechtler, Ravi Bhadange, Nachiket Patil, Takeshi Tokonaga, Stefan Mallmann, Michael Schwab, Dietmar Stapel, Willy Klier, Joerg Eesmann
  • Patent number: 8583354
    Abstract: Systems and methods for computing the center of gravity of a vehicle. One method includes determining a first, second, and third acceleration of the vehicle along an x-axis, a y-axis, and a z-axis; determining a first, second, and third angular rate of the vehicle along the x-axis, the y-axis, and the z-axis; determining a total force acting on the vehicle; and determining an estimated mass of the vehicle. The method also includes computing a center of gravity of the vehicle based on the first acceleration, the second acceleration, the third acceleration, the first angular rate, the second angular rate, the third angular rate, the total force acting on the vehicle, and the estimated mass.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: November 12, 2013
    Assignee: Robert Bosch GmbH
    Inventor: Willy Klier
  • Patent number: 8571758
    Abstract: A system and method of continuously updating a steering wheel angle offset value to adapt to changing road conditions. A vehicle control system receives a plurality of vehicle parameter values each from a different vehicle sensor. The system then calculates a plurality of observed steering angle values, each using a different calculation method based on one or more of the plurality of vehicle parameter values. The plurality of observed steering angle values are then used to calculate a vehicle steering angle. A steering wheel angle offset value is then calculated based on the steering wheel angle and the calculated vehicle steering angle. The steering wheel angle offset value and the steering wheel angle are used to control the vehicle's steering system.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: October 29, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Willy Klier, David VanderLugt
  • Patent number: 8494708
    Abstract: A controller for determining whether a previously-detected vehicle malfunction still exists. If the malfunction is no longer detected in the sensor signals, a vehicle control system operates in a first operational state or normal operational state with respect to the previously-malfunctioning sensor (e.g., signals from the sensor are used to control the vehicle). If the malfunction continues to be detected, the vehicle control system operates in a second operational state or malfunction state with respect to the malfunctioning sensor in which the signals from the sensor are not used to control the vehicle.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: July 23, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Henrik Bechtler, Ravi Bhadange, Nachiket Patil, Takeshi Tokonaga, Stefan Mallmann, Michael Schwab, Dietmar Stapel, Willy Klier, Joerg Eesmann
  • Patent number: 8467929
    Abstract: A controller for determining whether a previously-detected vehicle wheel speed sensor malfunction still exists. The controller includes an electronic, non-volatile memory, and an electronic processing unit connected to the electronic, non-volatile memory. The electronic processing module includes a malfunction monitoring module, a failure handling module, and a signal checking module. The malfunction monitoring module monitors the operation of at least one wheel speed sensor and generates a fault signal when the at least one sensor malfunctions. The failure handling module causes drive cycle information and the fault information to be stored in the electronic, non-volatile memory. The signal checking module performs a signal check on information from the at least one wheel speed sensor. A tell-tale indicator is deactivated and/or a vehicle control system resumes normal operation if the wheel speed sensor passes the signal check.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: June 18, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Henrik Bechtler, Ravi Bhadange, Nachiket Patil, Takeshi Tokonaga, Stefan Mallmann, Michael Schwab, Dietmar Stapel, Willy Klier, Joerg Eesmann
  • Patent number: 8401730
    Abstract: A controller for indicating whether a previously-detected, acceleration-sensor malfunction no longer exists. The controller includes an electronic memory and an electronic processing unit connected to the electronic memory. The electronic processing module includes a malfunction monitoring module, a failure handling module, and a signal checking module. The signal checking module performs a signal check after the malfunction monitoring module generates the fault signal. The signal check includes executing a signal check function with a lateral acceleration signal. Also disclosed is a vehicle including the controller, and a method executed by the controller.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: March 19, 2013
    Assignee: Robert Bosch LLC
    Inventors: Henrik Bechtler, Ravi Bhadange, Nachiket Patil, Takeshi Tokonaga, Stefan Mallmann, Michael Schwab, Dietmar Stapel, Willy Klier, Joerg Eesmann
  • Publication number: 20120259506
    Abstract: Systems and methods of monitoring redundant vacuum sensors in the same vacuum chamber of a braking system to determine when an error condition is present in a braking system. The braking system includes a first sensor positioned in a chamber of the braking system and a second sensor positioned in the same chamber. A first reading is received from the first sensor and a second reading is received from the second sensor. A difference between the first reading and the second reading is determined. An error condition is indicated when the difference between the first reading and the second reading is greater than a threshold.
    Type: Application
    Filed: April 5, 2012
    Publication date: October 11, 2012
    Inventors: Willy Klier, Kenta Mineo, Scott Amenson
  • Publication number: 20120259536
    Abstract: Systems and methods for computing the center of gravity of a vehicle. One method includes determining a first, second, and third acceleration of the vehicle along an x-axis, a y-axis, and a z-axis; determining a first, second, and third angular rate of the vehicle along the x-axis, the y-axis, and the z-axis; determining a total force acting on the vehicle; and determining an estimated mass of the vehicle. The method also includes computing a center of gravity of the vehicle based on the first acceleration, the second acceleration, the third acceleration, the first angular rate, the second angular rate, the third angular rate, the total force acting on the vehicle, and the estimated mass.
    Type: Application
    Filed: April 6, 2011
    Publication date: October 11, 2012
    Applicant: ROBERT BOSCH GMBH
    Inventor: Willy Klier
  • Patent number: 8260516
    Abstract: A mechanism for determining whether a malfunctioning sensor has returned to a normal or acceptable operating range. The mechanism includes controllers and methods that perform a “good check” on the sensor to determine whether the sensor has returned to normal or acceptable operation after a malfunction has been detected. When a previously-malfunctioning sensor passes the “good check,” warning lights (or tell-tale) indicators are shut off and systems that relied upon information from the malfunctioning sensor return to normal operation.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: September 4, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Henrik Bechtler, Ravi Bhadange, Nachiket Patil, Takeshi Tokonaga, Stefan Mallmann, Michael Schwab, Dietmar Stapel, Willy Klier, Joerg Eesmann
  • Publication number: 20120095649
    Abstract: A system and method of continuously updating a steering wheel angle offset value to adapt to changing road conditions. A vehicle control system receives a plurality of vehicle parameter values each from a different vehicle sensor. The system then calculates a plurality of observed steering angle values, each using a different calculation method based on one or more of the plurality of vehicle parameter values. The plurality of observed steering angle values are then used to calculate a vehicle steering angle. A steering wheel angle offset value is then calculated based on the steering wheel angle and the calculated vehicle steering angle. The steering wheel angle offset value and the steering wheel angle are used to control the vehicle's steering system.
    Type: Application
    Filed: October 12, 2011
    Publication date: April 19, 2012
    Inventors: Willy Klier, David VanderLugt
  • Patent number: 8083021
    Abstract: Method for operating a steering system for a motor vehicle with at least one steerable wheel, a servo drive and a superimposed gear mechanism, the steering movement, initiated by the driver of the vehicle, and the movement for producing the steering movement of the steerable wheel, initiated by the servo drive for realizing useful functions (VSR, LAFN) being superimposed by the superimposed gear mechanism into a pinion angle, the servo drive for initiating the movement being triggered by a control signal (?Md) of a control device. The servo drive is turned back in a controlled manner when a substitute mode of at least one useful function (VSR, LAFN) of the steering system is switched off or on.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: December 27, 2011
    Assignee: ZF Lenksysteme GmbH
    Inventors: Wolfgang Reinelt, Willy Klier, Wolfgang Schuster, Reinhard Grossheim
  • Publication number: 20110071726
    Abstract: A controller for indicating whether a previously-detected, acceleration-sensor malfunction no longer exists. The controller includes an electronic memory and an electronic processing unit connected to the electronic memory. The electronic processing module includes a malfunction monitoring module, a failure handling module, and a signal checking module. The signal checking module performs a signal check after the malfunction monitoring module generates the fault signal. The signal check includes executing a signal check function with a lateral acceleration signal. Also disclosed is a vehicle including the controller, and a method executed by the controller.
    Type: Application
    Filed: August 20, 2010
    Publication date: March 24, 2011
    Applicant: ROBERT BOSCH GMBH
    Inventors: Henrik Bechtler, Ravi Bhadange, Nachiket Patil, Takeshi Tokonaga, Stefan Mallmann, Michael Schwab, Dietmar Stapel, Willy Klier, Joerg Eesmann
  • Publication number: 20110071723
    Abstract: A mechanism for determining whether a malfunctioning sensor has returned to a normal or acceptable operating range. The mechanism includes controllers and methods that perform a “good check” on the sensor to determine whether the sensor has returned to normal or acceptable operation after a malfunction has been detected. When a previously-malfunctioning sensor passes the “good check,” warning lights (or tell-tale) indicators are shut off and systems that relied upon information from the malfunctioning sensor return to normal operation.
    Type: Application
    Filed: August 20, 2010
    Publication date: March 24, 2011
    Applicant: ROBERT BOSCH GMBH
    Inventors: Henrik Bechtler, Ravi Bhandange, Nachiket Patil, Takeshi Tokonaga, Stefan Mallmann, Michael Schwab, Dietmar Stapel, Willy Klier, Joerg Eesmann