Patents by Inventor Willy Speth

Willy Speth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170233870
    Abstract: The present invention provides an advantageous method for producing a coating (3) increasing the coefficient of friction on a surface (5) of an element (6), wherein the method comprises the following steps: a) activating of hard particles (1) partially or completely covered by a bonding agent (2) in a non-thermal plasma (low-temperature plasma) at atmospheric pressure; and b) producing a layer (3) increasing the coefficient of friction on a surface (5) of the element (6) by depositing the hard particles (1), which are activated by the non-thermal atmospheric pressure plasma and which are coated with the bonding agent onto the surface (5) of the element (6). Specifically, for elements having a complicated shape or having a big size, this method is more efficient than known methods. No matrix or intermediate layers are necessary to fix the hard particles. The anchoring of the hard particles takes place directly in the joining surfaces themselves.
    Type: Application
    Filed: September 8, 2016
    Publication date: August 17, 2017
    Inventor: Willy Speth
  • Publication number: 20140186583
    Abstract: The present invention provides an advantageous method for producing a coating (3) increasing the coefficient of friction on a surface (5) of an element (6), wherein the method comprises the following steps: a) activating of hard particles (1) partially or completely covered by a bonding agent (2) in a non-thermal plasma (low-temperature plasma) at atmospheric pressure; and b) producing a layer (3) increasing the coefficient of friction on a surface (5) of the element (6) by depositing the hard particles (1), which are activated by the non-thermal atmospheric pressure plasma and which are coated with the bonding agent onto the surface (5) of the element (6). Specifically, for elements having a complicated shape or having a big size, this method is more efficient than known methods. No matrix or intermediate layers are necessary to fix the hard particles. The anchoring of the hard particles takes place directly in the joining surfaces themselves.
    Type: Application
    Filed: August 2, 2012
    Publication date: July 3, 2014
    Applicant: IP plasma & brands GmbH
    Inventor: Willy Speth