Patents by Inventor Wilson Moya

Wilson Moya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220323300
    Abstract: A biocontainer having a first film, the film having an interior and exterior side; articulating elements disposed on or within the first film, the articulating elements comprising at least one a folded hinge, a sealed joint, a thinned pathway, a bowed path, an embedded polymeric or metallic cylindrical fiber or rod; and a second film, optionally comprising articulating elements, joined to the first film, to form a biocontainer having a closed volume, wherein the articulating elements permit the biocontainer to expand and collapse along the articulating elements.
    Type: Application
    Filed: September 9, 2020
    Publication date: October 13, 2022
    Inventors: Shannon Cleveland, Marina Varlamova, John Saragosa, David DeCoste, Benjamin Cacace, Daniel Lamothe, George Gagne, James Dee, Wilson Moya, Stefano Berti Perez
  • Patent number: 11358102
    Abstract: The embodiments described herein relate to agarose ultrafiltration membrane composites and methods for making and using the same.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: June 14, 2022
    Assignee: EMD Millipore Corporation
    Inventors: Jad Jaber, Wilson Moya, Mikhail Kozlov
  • Patent number: 10865224
    Abstract: The present invention relates to improved processes and systems for purification of biological molecules, where the processes can be performed in a continuous manner.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: December 15, 2020
    Assignee: EMD Millipore Corporation
    Inventors: Alex Xenopoulos, Michael Phillips, Wilson Moya, Jad Jaber, Mikhail Kozlov, Ajish Potty, Matthew T. Stone, William Cataldo, Christopher Gillespie
  • Publication number: 20200368696
    Abstract: The embodiments described herein relate to agarose ultrafiltration membrane composites and methods for making and using the same.
    Type: Application
    Filed: July 1, 2020
    Publication date: November 26, 2020
    Inventors: Jad Jaber, Wilson Moya, Mikhail Kozlov
  • Patent number: 10793592
    Abstract: The present invention relates to the purification of target molecules like recombinant and/or biotherapeutic proteins. Activated carbon can be used to remove leachables and/or extractables resulting from disposable equipment employed in the process.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: October 6, 2020
    Assignee: Merck Patent GmbH
    Inventors: Romas Skudas, Klaus Adrian, Bianca Edlemann, Sven Andrecht, Wilson Moya
  • Patent number: 10793593
    Abstract: The present invention relates to a selectively soluble polymer capable of binding to one or more constituents in a mixture containing various biological materials and the methods of using such a polymer to purify a biomolecule from such a mixture. The polymer is soluble in the mixture under a certain set of process conditions such as pH or temperature and is rendered insoluble and precipitates out of solution upon a change in the process conditions. While in its solubilized state, the polymer is capable of binding to a selected entity within the stream such as impurities (DNA, RNA, host cell protein, endotoxins, etc.) in a cell broth and remains capable of binding to that entity even after the polymer is precipitated out of solution. The precipitate can then be filtered out from the remainder of the stream and the desired biomolecule is recovered and further processed.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: October 6, 2020
    Assignee: EMD Millipore Corporation
    Inventor: Wilson Moya
  • Patent number: 10737224
    Abstract: The embodiments described herein relate to agarose ultrafiltration membrane composites and methods for making and using the same.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: August 11, 2020
    Assignee: EMD Millipore Corporation
    Inventors: Jad Jaber, Wilson Moya, Mikhail Kozlov
  • Patent number: 10722602
    Abstract: A method for removing microorganisms from liquid samples and a nanofiber containing liquid filtration medium that simultaneously exhibits high liquid permeability and high microorganism retention. Microorganisms such as bacteria, particularly B. Diminuta, are removed from a liquid by passing the liquid through a porous nanofiber containing filtration medium having a B. Diminuta LRV greater than about 9, and the nanofiber(s) has a diameter from about 10 nm to about 1,000 nm. Another method for removing microorganisms such as bacteria and Mycloplasma, includes passing the liquid through a porous nanofiber containing filtration medium having a microorganism LRV greater than about 8, and the nanofiber(s) has a diameter from about 10 nm to about 1,000 nm. The filtration medium can be in the form of a fibrous electro spun polymeric nanofiber liquid filtration medium mat.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: July 28, 2020
    Assignee: EMD MILLIPORE CORPORATION
    Inventors: Mikhail Kozlov, Wilson Moya, Gabriel Tkacik
  • Patent number: 10634682
    Abstract: The present invention relates to a method of visualizing biomolecules, having the steps of: a) providing a sample of immobilized biomolecules in a matrix and carry on the electrophoresis process; b) incubating the matrix of step a) in a solution containing a cyanine-derived molecule, for a time of 5 to 60 minutes, at room temperature, in a container preventing exposure to light, shaking the container at less of 75 rpm; c) transferring the matrix from step b) to a container with a solution having: at least one tetrazolium salt and incubating for a time of 15 to 120 minutes at room temperature under light exposure; d) removing the matrix with immobilized biomolecules from the previous step and washing with distilled water; and e) visualizing directly by the naked eye the biomolecules immobilized in the matrix.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: April 28, 2020
    Assignee: UNIVERSIDAD DE CHILE
    Inventors: Christian Andres Marcelo Wilson Moya, Jorge Babul Cattan, Gabriela Isabel Contreras Arriagada
  • Patent number: 10252199
    Abstract: A method for removing retroviruses from liquid samples and a nanofiber containing liquid filtration medium that simultaneously exhibits high liquid permeability and high microorganism retention is disclosed. Retroviruses are removed from a liquid by passing the liquid through a porous nanofiber containing filtration medium having a retrovirus LRV greater than about 6, and the nanofiber(s) has a diameter from about 10 nm to about 100 nm. The filtration medium can be in the form of a fibrous electrospun polymeric nanofiber liquid filtration medium mat.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: April 9, 2019
    Assignee: EMD Millipore Corporation
    Inventors: Onur Y. Kas, Mikhail Kozlov, Wilson Moya, Sherry A. Leon, Philip Goddard, Jibin Hao, Gabriel Tkacik
  • Patent number: 10233211
    Abstract: The present invention relates to a selectively soluble polymer capable of binding to a desired molecules in an unclarified mixture containing various biological materials and the methods of using such a polymer to purify a molecule from such a mixture. The polymer is soluble in the mixture under a certain set of process conditions such as pH or temperature and/or salt concentration and is rendered insoluble and precipitates out of solution upon a change in the process conditions. The polymer is capable of binding to the desired molecule (protein, polypeptide, etc) and remains capable of binding to that molecule even after the polymer is precipitated out of solution. The precipitate can then be filtered out from the remainder of the stream and the desired biomolecule is recovered such as by elution and further processed.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: March 19, 2019
    Assignee: EMD Millipore Corporation
    Inventors: Wilson Moya, Jad Jaber
  • Publication number: 20190015533
    Abstract: A method for removing microorganisms from liquid samples and a nanofiber containing liquid filtration medium that simultaneously exhibits high liquid permeability and high microorganism retention. Microorganisms such as bacteria, particularly B. Diminuta, are removed from a liquid by passing the liquid through a porous nanofiber containing filtration medium having a B. Diminuta LRV greater than about 9, and the nanofiber(s) has a diameter from about 10 nm to about 1,000 nm. Another method for removing microorganisms such as bacteria and Mycloplasma, includes passing the liquid through a porous nanofiber containing filtration medium having a microorganism LRV greater than about 8, and the nanofiber(s) has a diameter from about 10 nm to about 1,000 nm. The filtration medium can be in the form of a fibrous electro spun polymeric nanofiber liquid filtration medium mat.
    Type: Application
    Filed: August 2, 2018
    Publication date: January 17, 2019
    Inventors: Mikhail Kozlov, Wilson Moya, Gabriel Tkacik
  • Patent number: 10064965
    Abstract: A method for removing microorganisms from liquid samples and a nanofiber containing liquid filtration medium that simultaneously exhibits high liquid permeability and high microorganism retention. Microorganisms such as bacteria, particularly B. Diminuta, are removed from a liquid by passing the liquid through a porous nanofiber containing filtration medium having a B. Diminuta LRV greater than about 9, and the nanofiber(s) has a diameter from about 10 nm to about 1,000 nm. Another method for removing microorganisms such as bacteria and Mycloplasma, includes passing the liquid through a porous nanofiber containing filtration medium having a microorganism LRV greater than about 8, and the nanofiber(s) has a diameter from about 10 nm to about 1,000 nm. The filtration medium can be in the form of a fibrous electro spun polymeric nanofiber liquid filtration medium mat.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: September 4, 2018
    Assignee: EMD Millipore Corporation
    Inventors: Mikhail Kozlov, Wilson Moya, Gabriel Tkacik
  • Publication number: 20180169593
    Abstract: The embodiments described herein relate to agarose ultrafiltration membrane composites and methods for making and using the same.
    Type: Application
    Filed: August 12, 2016
    Publication date: June 21, 2018
    Inventors: Jad Jaber, Wilson Moya, Mikhail Kozlov
  • Patent number: 9943616
    Abstract: A method for removing microorganisms from liquid samples and a nanofiber containing liquid filtration medium that simultaneously exhibits high liquid permeability and high microorganism retention. Microorganisms such as bacteria, particularly B. Diminuta, are removed from a liquid by passing the liquid through a porous nanofiber containing filtration medium having a B. Diminuta LRV greater than about 9, and the nanofiber(s) has a diameter from about 10 nm to about 1,000 nm. Another method for removing microorganisms such as bacteria and Mycloplasma, includes passing the liquid through a porous nanofiber containing filtration medium having a microorganism LRV greater than about 8, and the nanofiber(s) has a diameter from about 10 nm to about 1,000 nm. The filtration medium can be in the form of a fibrous electro spun polymeric nanofiber liquid filtration medium mat.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: April 17, 2018
    Assignee: EMD Millipore Corporation
    Inventors: Mikhail Kozlov, Wilson Moya, Gabriel Tkacik
  • Patent number: 9889214
    Abstract: A method for removing microorganisms from liquid samples and a nanofiber containing liquid filtration medium that simultaneously exhibits high liquid permeability and high microorganism retention. Microorganisms such as bacteria, particularly B. Diminuta, are removed from a liquid by passing the liquid through a porous nanofiber containing filtration medium having a B. Diminuta LRV greater than about 9, and the nanofiber(s) has a diameter from about 10 nm to about 1,000 nm. Another method for removing microorganisms such as bacteria and Mycloplasma, includes passing the liquid through a porous nanofiber containing filtration medium having a microorganism LRV greater than about 8, and the nanofiber(s) has a diameter from about 10 nm to about 1,000 nm. The filtration medium can be in the form of a fibrous electro spun polymeric nanofiber liquid filtration medium mat.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: February 13, 2018
    Assignee: EMD Millipore Corporation
    Inventors: Mikhail Kozlov, Wilson Moya, Gabriel Tkacik
  • Publication number: 20170360969
    Abstract: A method for removing microorganisms from liquid samples and a nanofiber containing liquid filtration medium that simultaneously exhibits high liquid permeability and high microorganism retention. Microorganisms such as bacteria, particularly B. Diminuta, are removed from a liquid by passing the liquid through a porous nanofiber containing filtration medium having a B. Diminuta LRV greater than about 9, and the nanofiber(s) has a diameter from about 10 nm to about 1,000 nm. Another method for removing microorganisms such as bacteria and Mycloplasma, includes passing the liquid through a porous nanofiber containing filtration medium having a microorganism LRV greater than about 8, and the nanofiber(s) has a diameter from about 10 nm to about 1,000 nm. The filtration medium can be in the form of a fibrous electro spun polymeric nanofiber liquid filtration medium mat.
    Type: Application
    Filed: August 30, 2017
    Publication date: December 21, 2017
    Inventors: Mikhail Kozlov, Wilson Moya, Gabriel Tracik
  • Publication number: 20170360971
    Abstract: A method for removing microorganisms from liquid samples and a nanofiber containing liquid filtration medium that simultaneously exhibits high liquid permeability and high microorganism retention. Microorganisms such as bacteria, particularly B. Diminuta, are removed from a liquid by passing the liquid through a porous nanofiber containing filtration medium having a B. Diminuta LRV greater than about 9, and the nanofiber(s) has a diameter from about 10 nm to about 1,000 nm. Another method for removing microorganisms such as bacteria and Mycloplasma, includes passing the liquid through a porous nanofiber containing filtration medium having a microorganism LRV greater than about 8, and the nanofiber(s) has a diameter from about 10 nm to about 1,000 nm. The filtration medium can be in the form of a fibrous electro spun polymeric nanofiber liquid filtration medium mat.
    Type: Application
    Filed: August 30, 2017
    Publication date: December 21, 2017
    Inventors: Mikhail Kozlov, Wilson Moya, Gabriel Tkacik
  • Publication number: 20170360970
    Abstract: A method for removing microorganisms from liquid samples and a nanofiber containing liquid filtration medium that simultaneously exhibits high liquid permeability and high microorganism retention. Microorganisms such as bacteria, particularly B. Diminuta, are removed from a liquid by passing the liquid through a porous nanofiber containing filtration medium having a B. Diminuta LRV greater than about 9, and the nanofiber(s) has a diameter from about 10 nm to about 1,000 nm. Another method for removing microorganisms such as bacteria and Mycloplasma, includes passing the liquid through a porous nanofiber containing filtration medium having a microorganism LRV greater than about 8, and the nanofiber(s) has a diameter from about 10 nm to about 1,000 nm. The filtration medium can be in the form of a fibrous electro spun polymeric nanofiber liquid filtration medium mat.
    Type: Application
    Filed: August 30, 2017
    Publication date: December 21, 2017
    Inventors: Mikhail Kozlov, Wilson Moya, Gabriel Tkacik
  • Publication number: 20170356919
    Abstract: The present invention relates to a method of visualizing biomolecules, having the steps of: a) providing a sample of immobilized biomolecules in a matrix and carry on the electrophoresis process; b) incubating the matrix of step a) in a solution containing a cyanine-derived molecule, for a time of 5 to 60 minutes, at room temperature, in a container preventing exposure to light, shaking the container at less of 75 rpm; c) transferring the matrix from step b) to a container with a solution having: at least one tetrazolium salt and incubating for a time of 15 to 120 minutes at room temperature under light exposure; d) removing the matrix with immobilized biomolecules from the previous step and washing with distilled water; and e) visualizing directly by the naked eye the biomolecules immobilized in the matrix.
    Type: Application
    Filed: October 29, 2015
    Publication date: December 14, 2017
    Inventors: Christian Andres Marcelo WILSON MOYA, Jorge BABUL CATTAN, Gabriela Isabel CONTRERAS ARRIAGADA