Patents by Inventor Wilson V. Vu

Wilson V. Vu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10028401
    Abstract: Rack configurations provide increased storage device density without compromising cooling or immediate device availability. A device rack has a frame including posts which define an interior containing system board(s) with electronic device connectors. The system board is fixed relative to the frame, and the rack is devoid of sliding rails and cable management arms for the devices, thereby reducing rack weight and mechanical complexity. A vertical plenum within the rack between loaded system boards carries cooling air for the devices and may also permit use of a service robot to install or replace hot-pluggable hard disk drives or other devices, which can be arranged in columns. As one objective measure of the increased density provided, a connector density is at least a specified number of hundreds of mechanically and electronically releasably connectable electronic device connectors per cubic meter within the rack.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: July 17, 2018
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Mark Edward Shaw, Wilson V. Vu, Martha Geoghegan Peterson, Hien A. Thai, Eric C. Peterson
  • Patent number: 9829935
    Abstract: In computing scenarios involving multiple computational units, an enclosure (e.g., a rack or server cabinet) may store the units and provide resources such as shared power and network connectivity. Additionally, the components of the units may communicate through a Serial Attached SCSI (SAS) bus, but many such enclosures provide little or no integration with the SAS buses, thus entailing extensive SCSI cabling. Presented herein are architectures for enclosures presenting a set of slots for trays storing respective computing blades, where such trays include SAS connectors that connect directly (i.e., without cabling) with connectors on a midplane that interconnects the blades into a SAS bus featuring at least one integrated SAS expander. Additional architectural variations involve providing SAS expander on one or both of the midplane and the blades; grouping blades into subsets having distinct SAS buses; and interconnecting the SAS buses and expanders of multiple midplanes in the enclosure.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: November 28, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Mark Shaw, Wilson V. Vu
  • Publication number: 20170181306
    Abstract: Rack configurations provide increased storage device density without compromising cooling or immediate device availability. A device rack has a frame including posts which define an interior containing system board(s) with electronic device connectors. The system board is fixed relative to the frame, and the rack is devoid of sliding rails and cable management arms for the devices, thereby reducing rack weight and mechanical complexity. A vertical plenum within the rack between loaded system boards carries cooling air for the devices and may also permit use of a service robot to install or replace hot-pluggable hard disk drives or other devices, which can be arranged in columns. As one objective measure of the increased density provided, a connector density is at least a specified number of hundreds of mechanically and electronically releasably connectable electronic device connectors per cubic meter within the rack.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 22, 2017
    Inventors: Mark Edward SHAW, Wilson V. VU, Martha Geoghegan PETERSON, Hien A. THAI, Eric C. PETERSON
  • Publication number: 20130282944
    Abstract: In computing scenarios involving multiple computational units, an enclosure (e.g., a rack or server cabinet) may store the units and provide resources such as shared power and network connectivity. Additionally, the components of the units may communicate through a Serial Attached SCSI (SAS) bus, but many such enclosures provide little or no integration with the SAS buses, thus entailing extensive SCSI cabling. Presented herein are architectures for enclosures presenting a set of slots for trays storing respective computing blades, where such trays include SAS connectors that connect directly (i.e., without cabling) with connectors on a midplane that interconnects the blades into a SAS bus featuring at least one integrated SAS expander. Additional architectural variations involve providing SAS expander on one or both of the midplane and the blades; grouping blades into subsets having distinct SAS buses; and interconnecting the SAS buses and expanders of multiple midplanes in the enclosure.
    Type: Application
    Filed: April 23, 2012
    Publication date: October 24, 2013
    Applicant: Microsoft Corporation
    Inventors: Mark Shaw, Wilson V. Vu