Patents by Inventor Wim Magnus

Wim Magnus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11055625
    Abstract: The disclosed technology generally relates to superconducting devices, and more particularly to superconducting rings, qubits comprising the superconducting rings and methods of coherently coupling flux states of the superconducting rings. In one aspect, a qubit includes a superconducting ring around a hole. The qubit additionally includes an electric field generator adapted for applying an electric field in a plane of the superconducting ring over at least part of the superconducting ring, and a magnetic field generator adapted for applying a magnetic field component orthogonal to the plane of the superconducting ring such that the magnetic field component at least crosses the hole of the ring.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: July 6, 2021
    Assignees: IMEC vzw, Katholieke Universiteit Leuven
    Inventors: Ahmed Kenawy, Bart Soree, Wim Magnus
  • Publication number: 20200279184
    Abstract: The disclosed technology generally relates to superconducting devices, and more particularly to superconducting rings, qubits comprising the superconducting rings and methods of coherently coupling flux states of the superconducting rings. In one aspect, a qubit includes a superconducting ring around a hole. The qubit additionally includes an electric field generator adapted for applying an electric field in a plane of the superconducting ring over at least part of the superconducting ring, and a magnetic field generator adapted for applying a magnetic field component orthogonal to the plane of the superconducting ring such that the magnetic field component at least crosses the hole of the ring.
    Type: Application
    Filed: February 28, 2019
    Publication date: September 3, 2020
    Inventors: Ahmed Kenawy, Bart Soree, Wim Magnus
  • Patent number: 10056485
    Abstract: The present disclosure relates to semiconductor devices with gate-controlled energy filtering. One example embodiment includes a semiconductor device. The semiconductor device includes a first electrode, a second electrode, and a channel therebetween. The semiconductor device also includes a first interference structure located in the channel. Further, the semiconductor device includes a first gate for controlling a voltage over the first interference structure. The first interference structure is formed to induce a local mini-band structure that can be shifted by the voltage controlled by the first gate, such that the first local mini-band structure is: (1) aligned with a band structure in the semiconductor device to turn the semiconductor device on; and (2) misaligned with the band structure in the semiconductor device to turn the semiconductor device off.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: August 21, 2018
    Assignees: IMEC VZW, UNIVERSITEIT ANTWERPEN
    Inventors: Maarten Thewissen, Wim Magnus, Bart Soree
  • Publication number: 20180190818
    Abstract: The present disclosure relates to semiconductor devices with gate-controlled energy filtering. One example embodiment includes a semiconductor device. The semiconductor device includes a first electrode, a second electrode, and a channel therebetween. The semiconductor device also includes a first interference structure located in the channel. Further, the semiconductor device includes a first gate for controlling a voltage over the first interference structure.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 5, 2018
    Applicants: IMEC VZW, Universiteit Antwerpen
    Inventors: Maarten Thewissen, Wim Magnus, Bart Soree
  • Publication number: 20120248417
    Abstract: A Field Effect Transistor (FET) semiconductor device comprising at least one nanostructure, comprises at least a uniformly doped beam-shaped nanostructure having two major surfaces, a gate electrode provided at either major surface of the nanostructure, and an insulating layer between each of the major surfaces of the nanostructure and the gate electrodes to form a double gate nanostructure pinch-off FET. It is an advantage of such FET that pinch-off voltage and current of the FET can be independently tuned.
    Type: Application
    Filed: December 21, 2009
    Publication date: October 4, 2012
    Applicant: IMEC
    Inventors: Bart Soree, Wim Magnus
  • Publication number: 20110270593
    Abstract: In order to design on-chip interconnect structures in a flexible way, a CAD approach is advocated in three dimensions, describing high frequency effects such as current redistribution due to the skin-effect or eddy currents and the occurrence of slow-wave modes. The electromagnetic environment is described by a scalar electric potential and a magnetic vector potential. These potentials are not uniquely defined, and in order to obtain a consistent discretization scheme, a gauge-transformation field is introduced. The displacement current is taken into account to describe current redistribution and a small-signal analysis solution scheme is proposed based upon existing techniques for static fields in semiconductors. In addition methods and apparatus for refining the mesh used for numerical analysis is described.
    Type: Application
    Filed: May 2, 2011
    Publication date: November 3, 2011
    Applicant: IMEC
    Inventors: Peter Meuris, Wim Schoenmaker, Wim Magnus
  • Patent number: 8003410
    Abstract: A method of operating a quantum system comprising computational elements, including an insulated ring of superconductive material, and semi-closed rings used as an interface between the computational elements and the external world, is disclosed. In one aspect, the method comprises providing an electrical signal, e.g. a current, in an input ring magnetically coupled to a computational element, which generates a magnetic field in the computational element and sensing the change in the current and/or voltage of an output element magnetically coupled to the computational element. The electrical input signal can be an AC signal or a DC signal. The computational element is electromagnetically coupled with other adjacent computational elements and/or with the interface elements. The corresponding magnetic flux between the computational elements and/or the interface elements acts as an information carrier. Ferromagnetic cores are used to improve the magnetic coupling between adjacent elements.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: August 23, 2011
    Assignees: IMEC, Katholieke Universiteit Leuven
    Inventors: Christoph Kerner, Wim Magnus, Dusan Golubovic
  • Patent number: 7880163
    Abstract: A novel nanostructure device operating in Junction Field Effect Transistor (JFET) mode is provided that avoids the majority of the carriers that interact with the interface (e.g. surface roughness, high-k scattering).
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: February 1, 2011
    Assignee: IMEC
    Inventors: Bart Soree, Wim Magnus
  • Publication number: 20100084632
    Abstract: A novel nanostructure device operating in Junction Field Effect Transistor (JFET) mode is provided that avoids the majority of the carriers that interact with the interface (e.g. surface roughness, high-k scattering).
    Type: Application
    Filed: October 6, 2008
    Publication date: April 8, 2010
    Applicant: Interuniversitair Microelektronica Centrum vzw (IMEC)
    Inventors: Bart Soree, Wim Magnus
  • Patent number: 7541198
    Abstract: A method of forming a quantum system comprising computational elements, consisting of an insulated ring of superconductive material, and semi-closed rings, which are used as an interface or input/output facility between the quantum bit and the external world, is disclosed. Faraday induction is used to provide electromagnetic coupling between adjacent computational elements and between the computational elements with interface elements of the quantum system. Therefore the corresponding magnetic flux acts as an information carrier. Ferromagnetic cores are used to improve the magnetic coupling between adjacent elements of the quantum system.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: June 2, 2009
    Assignees: Interuniversitair Microelektronica Centrum vzw (IMEC), Katholieke Universiteit Leuven
    Inventors: Wim Magnus, Christoph Kerner, Wim Schoenmaker
  • Publication number: 20090079494
    Abstract: A method of operating a quantum system comprising computational elements, including an insulated ring of superconductive material, and semi-closed rings used as an interface between the computational elements and the external world, is disclosed. In one aspect, the method comprises providing an electrical signal, e.g. a current, in an input ring magnetically coupled to a computational element, which generates a magnetic field in the computational element and sensing the change in the current and/or voltage of an output element magnetically coupled to the computational element. The electrical input signal can be an AC signal or a DC signal. The computational element is electromagnetically coupled with other adjacent computational elements and/or with the interface elements. The corresponding magnetic flux between the computational elements and/or the interface elements acts as an information carrier. Ferromagnetic cores are used to improve the magnetic coupling between adjacent elements.
    Type: Application
    Filed: September 25, 2008
    Publication date: March 26, 2009
    Applicants: Interuniversitair Microelektronica Centrum vzw (IMEC), Katholieke Universiteit Leuven
    Inventors: Christoph Kerner, Wim Magnus, Dusan Golubovic
  • Publication number: 20090012759
    Abstract: In order to design on-chip interconnect structures in a flexible way, a CAD approach is advocated in three dimensions, describing high frequency effects such as current redistribution due to the skin-effect or eddy currents and the occurrence of slow-wave modes. The electromagnetic environment is described by a scalar electric potential and a magnetic vector potential. These potentials are not uniquely defined, and in order to obtain a consistent discretization scheme, a gauge-transformation field is introduced. The displacement current is taken into account to describe current redistribution and a small-signal analysis solution scheme is proposed based upon existing techniques for static fields in semiconductors. In addition methods and apparatus for refining the mesh used for numerical analysis is described.
    Type: Application
    Filed: September 5, 2008
    Publication date: January 8, 2009
    Applicant: Interuniversitair Microelektronica Centrum (IMEC)
    Inventors: Peter Meuris, Wim Schoenmaker, Wim Magnus
  • Publication number: 20060271888
    Abstract: In order to design on-chip interconnect structures in a flexible way, a CAD approach is advocated in three dimensions, describing high frequency effects such as current redistribution due to the skin-effect or eddy currents and the occurrence of slow-wave modes. The electromagnetic environment is described by a scalar electric potential and a magnetic vector potential. These potentials are not uniquely defined, and in order to obtain a consistent discretization scheme, a gauge-transformation field is introduced. The displacement current is taken into account to describe current redistribution and a small-signal analysis solution scheme is proposed based upon existing techniques for static fields in semiconductors. In addition methods and apparatus for refining the mesh used for numerical analysis is described.
    Type: Application
    Filed: August 9, 2006
    Publication date: November 30, 2006
    Inventors: Peter Meuris, Wim Schoenmaker, Wim Magnus
  • Publication number: 20060264069
    Abstract: A method of forming a quantum system comprising computational elements, consisting of an insulated ring of superconductive material, and semi-closed rings, which are used as an interface or input/output facility between the quantum bit and the external world, is disclosed. Faraday induction is used to provide electromagnetic coupling between adjacent computational elements and between the computational elements with interface elements of the quantum system. Therefore the corresponding magnetic flux acts as an information carrier. Ferromagnetic cores are used to improve the magnetic coupling between adjacent elements of the quantum system.
    Type: Application
    Filed: February 28, 2006
    Publication date: November 23, 2006
    Inventors: Wim Magnus, Christoph Kerner, Wim Schoenmaker
  • Patent number: 7124069
    Abstract: In order to design on-chip interconnect structures in a flexible way, a CAD approach is advocated in three dimensions, describing high frequency effects such as current redistribution due to the skin-effect or eddy currents and the occurrence of slow-wave modes. The electromagnetic environment is described by a scalar electric potential and a magnetic vector potential. These potentials are not uniquely defined, and in order to obtain a consistent discretization scheme, a gauge-transformation field is introduced. The displacement current is taken into account to describe current redistribution and a small-signal analysis solution scheme is proposed based upon existing techniques for static fields in semiconductors. In addition methods and apparatus for refining the mesh used for numerical analysis is described.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: October 17, 2006
    Assignee: Interuniversitair Microelektronica Centrum vzw
    Inventors: Peter Meuris, Wim Schoenmaker, Wim Magnus
  • Patent number: 7042004
    Abstract: The present invention discloses a quantum system comprising computational elements, consisting of an insulated ring of superconductive material, and semi-closed rings, which are used as an interface or input/output facility between the quantum bit and the external world. Faraday induction is used to provide electromagnetic coupling between adjacent computational elements and between the computational elements with interface elements of the quantum system. Therefore the corresponding magnetic flux acts as an information carrier. Ferromagnetic cores are used to improve the magnetic coupling between adjacent elements of the quantum system.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: May 9, 2006
    Assignees: Interuniversitair Microelektronica Centrum (IMEC), Katholieke Universiteit Leuven
    Inventors: Wim Magnus, Christoph Kerner, Wim Schoenmaker
  • Publication number: 20040071019
    Abstract: The present invention discloses a quantum system comprising computational elements, consisting of an insulated ring of superconductive material, and semi-closed rings, which are used as an interface or input/output facility between the quantum bit and the external world. Faraday induction is used to provide electromagnetic coupling between adjacent computational elements and between the computational elements with interface elements of the quantum system. Therefore the corresponding magnetic flux acts as an information carrier. Ferromagnetic cores are used to improve the magnetic coupling between adjacent elements of the quantum system.
    Type: Application
    Filed: June 20, 2003
    Publication date: April 15, 2004
    Inventors: Wim Magnus, Christoph Kerner, Wim Schoenmaker
  • Publication number: 20040024576
    Abstract: In order to design on-chip interconnect structures in a flexible way, a CAD approach is advocated in three dimensions, describing high frequency effects such as current redistribution due to the skin-effect or eddy currents and the occurrence of slow-wave modes. The electromagnetic environment is described by a scalar electric potential and a magnetic vector potential. These potentials are not uniquely defined, and in order to obtain a consistent discretization scheme, a gauge-transformation field is introduced. The displacement current is taken into account to describe current redistribution and a small-signal analysis solution scheme is proposed based upon existing techniques for static fields in semiconductors. In addition methods and apparatus for refining the mesh used for numerical analysis is described.
    Type: Application
    Filed: July 29, 2003
    Publication date: February 5, 2004
    Inventors: Peter Meuris, Wim Schoenmaker, Wim Magnus
  • Patent number: 6665849
    Abstract: In order to design on-chip interconnect structures in a flexible way, a CAD approach is advocated in three dimensions, describing high frequency effects such as current redistribution due to the skin-effect or eddy currents and the occurrence of slow-wave modes. The electromagnetic environment is described by a scalar electric potential and a magnetic vector potential. These potentials are not uniquely defined, and in order to obtain a consistent discretization scheme, a gauge-transformation field is introduced. The displacement current is taken into account to describe current redistribution and a small-signal analysis solution scheme is proposed based upon existing techniques for static fields in semiconductors. In addition methods and apparatus for refining the mesh used for numerical analysis is described.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: December 16, 2003
    Assignee: Interuniversitair Microelektronica Centrum vzw
    Inventors: Peter Meuris, Wim Schoenmaker, Wim Magnus
  • Patent number: 6453275
    Abstract: A method, i.e. the so-called Cube-Assembling Method (CAM), is disclosed for locally refining a n-dimensional mesh in a predetermined domain, wherein the mesh comprises nodes and n−1 planes connecting these nodes thereby dividing said domain in n-dimensional first elements. By applying a mesh on a domain, the domain can be introduced in a computer aided design environment for optimization purposes. Concerning the mesh, one of the issues is to perform the optimization using the appropriate amount of nodes at the appropriate location The method of the present invention succeeds in adding or removing nodes locally. The assembling is done over the elements, being e.g. squares or cubes or hypercubes dependent of the dimension of the mesh. Like the finite-box method, the CAM method is easy to program, even in higher dimensions. However, the CAM method does not suffer from the restriction that only one line may terminate at the side of a box.
    Type: Grant
    Filed: June 9, 1999
    Date of Patent: September 17, 2002
    Assignee: Interuniversitair Micro-Elektronica Centrum (IMEC vzw)
    Inventors: Wim Schoenmaker, Wim Magnus