Patents by Inventor Winfried Lendeckel

Winfried Lendeckel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040259248
    Abstract: Double-stranded RNA (dsRNA) induces sequence-specific post-transcriptional gene silencing in many organisms by a process known as RNA interference (RNAi). Using a Drosophila in vitro system, we demonstrate that 19-23 nt short RNA fragments are the sequence-specific mediators of RNAi. The short interfering RNAs (siRNAs) are generated by an RNase III-like processing reaction from long dsRNA. Chemically synthesized siRNA duplexes with overhanging 3′ ends mediate efficient target RNA cleavage in the lysate, and the cleavage site is located near the center of the region spanned by the guiding siRNA. Furthermore, we provide evidence that the direction of dsRNA processing determines whether sense or antisense target RNA can be cleaved by the produced siRNP complex.
    Type: Application
    Filed: April 27, 2004
    Publication date: December 23, 2004
    Applicant: Max-Planck-Gesellschaft zur Forderung Der Wissenschaften e.V.
    Inventors: Thomas Tuschl, Sayda Mahgoub Elbashir, Winfried Lendeckel
  • Publication number: 20040259247
    Abstract: Double-stranded RNA (dsRNA) induces sequence-specific post-transcriptional gene silencing in many organisms by a process known as RNA interference (RNAi). Using a Drosophila in vitro system, we demonstrate that 19-23 nt short RNA fragments are the sequence-specific mediators of RNAi. The short interfering RNAs (siRNAs) are generated by an RNase III-like processing reaction from long dsRNA. Chemically synthesized siRNA duplexes with overhanging 3′ ends mediate efficient target RNA cleavage in the lysate, and the cleavage site is located near the center of the region spanned by the guiding siRNA. Furthermore, we provide evidence that the direction of dsRNA processing determines whether sense or antisense target RNA can be cleaved by the produced siRNP complex.
    Type: Application
    Filed: July 26, 2004
    Publication date: December 23, 2004
    Inventors: Thomas Tuschl, Sayda Mahgoub Elbashir, Winfried Lendeckel, Matthias Wilm, Reinhard Luhrmann
  • Publication number: 20040229266
    Abstract: Double-stranded RNA (dsRNA) induces sequence-specific post-transcriptional gene silencing in many organisms by a process known as RNA interference (RNAi). Using a Drosophila in vitro system, we demonstrate that 19-23 nt short RNA fragments are the sequence-specific mediators of RNAi. The short interfering RNAs (siRNAs) are generated by an RNase III-like processing reaction from long dsRNA. Chemically synthesized siRNA duplexes with overhanging 3′ ends mediate efficient target RNA cleavage in the lysate, and the cleavage site is located near the center of the region spanned by the guiding siRNA. Furthermore, we provide evidence that the direction of dsRNA processing determines whether sense or antisense target RNA can be cleaved by the produced siRNP complex.
    Type: Application
    Filed: April 27, 2004
    Publication date: November 18, 2004
    Applicant: Max-Planck-Gesellschaft zur Forderung Der Wissenschaften e.V.
    Inventors: Thomas Tuschl, Sayda Mahgoub Elbashir, Winfried Lendeckel