Patents by Inventor Winfried Magg

Winfried Magg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230381896
    Abstract: A method for identifying disruptions during a machining process, more particularly during a cutting process, includes: machining, more particularly cutting, a workpiece while moving a machining tool, in particular a laser machining head, and the workpiece relative to one another, recording an image of a region on the workpiece to be monitored, the region to be monitored being an interaction region of the machining tool with the workpiece, and evaluating the image of the region to be monitored. For the purpose of identifying at least one disruption of the machining process, the presence or the lack of a local intensity drop in an intensity profile within the interaction region is detected, during the evaluation of the image, in an advancement direction of the machining process. There is also described an associated machining apparatus.
    Type: Application
    Filed: August 10, 2023
    Publication date: November 30, 2023
    Inventors: Winfried Magg, Boris Regaard, David Schindhelm, Steffen Kessler
  • Patent number: 11471977
    Abstract: A device for monitoring, in particular for closed-loop control, of a thermal cutting process carried out on a workpiece. The device includes a focusing unit for focusing a machining beam, in particular a laser beam, onto the workpiece for the formation of a kerf on the workpiece. The device also includes an image acquisition unit to generate at least one image of a region of the workpiece, and an evaluation unit configured to determine, based on the at least one image, at least one measured variable for the course of the gap width of the kerf in a thickness direction of the workpiece. The invention also relates to an associated method for monitoring, in particular for closed-loop control, of a thermal cutting process carried out on a workpiece.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: October 18, 2022
    Assignee: TRUMPF Werkzeugmaschinen GmbH + Co. KG
    Inventors: Winfried Magg, David Schindhelm, Boris Regaard, Oliver Bocksrocker, Volker Rominger
  • Publication number: 20210387280
    Abstract: A method for monitoring, in particular for controlling, a cutting process on a workpiece, includes focusing a machining beam, in particular a laser beam, on the workpiece, detecting a region of the workpiece to be monitored, the region including an interaction region in which the machining beam interacts with the workpiece, and determining at least one characteristic variable of the cutting process, in particular of a kerf formed during the cutting process, on the basis of the detected interaction region. In a fusion cutting process, a cutting front length of a cutting front formed at the kerf is determined as a characteristic variable on the basis of the detected interaction region. A corresponding device for monitoring, in particular for controlling, a cutting process on a workpiece, is also provided.
    Type: Application
    Filed: October 22, 2019
    Publication date: December 16, 2021
    Inventors: Steffen Kessler, David Schindhelm, Winfried Magg
  • Publication number: 20210229220
    Abstract: A method determines at least one parameter for a process quality during a processing process. The method includes: processing a workpiece while moving a processing tool and the workpiece relative to one another; monitoring a region on the workpiece; determining the at least one parameter for the process quality based on the monitored region; and determining at least one position-dependent parameter for the process quality based on a plurality of measured values of the at least one parameter at a same processing position, or determining at least one direction-dependent parameter for the process quality based on the plurality of measured values of the at least one parameter in a same processing direction.
    Type: Application
    Filed: April 9, 2021
    Publication date: July 29, 2021
    Inventors: Boris Regaard, Winfried Magg
  • Publication number: 20190240785
    Abstract: A device for monitoring, in particular for closed-loop control, of a thermal cutting process carried out on a workpiece. The device includes a focusing unit for focusing a machining beam, in particular a laser beam, onto the workpiece for the formation of a kerf on the workpiece. The device also includes an image acquisition unit to generate at least one image of a region of the workpiece, and an evaluation unit configured to determine, based on the at least one image, at least one measured variable for the course of the gap width of the kerf in a thickness direction of the workpiece. The invention also relates to an associated method for monitoring, in particular for closed-loop control, of a thermal cutting process carried out on a workpiece.
    Type: Application
    Filed: April 12, 2019
    Publication date: August 8, 2019
    Inventors: Winfried Magg, David Schindhelm, Boris Regaard, Oliver Bocksrocker, Volker Rominger
  • Publication number: 20190232434
    Abstract: The invention relates to a method for determining a focal position of a machining beam, in particular a laser beam, relative to a workpiece when machining the workpiece using the machining beam, having the following steps: receiving at least one spatially resolved image of a workpiece region to be monitored, said region comprising the cut edges of a cut gap formed during the machining process on the upper face of the workpiece, ascertaining a gap width of the cut gap on the upper face of the workpiece using the cut edges in the at least one spatially resolved image, and determining the focal position of the machining beam relative to the workpiece using the ascertained gap width. The invention also relates to a corresponding device.
    Type: Application
    Filed: April 11, 2019
    Publication date: August 1, 2019
    Inventors: Winfried Magg, David Schindhelm, Boris Regaard
  • Patent number: 9267905
    Abstract: A method for detecting defect in a weld seam during laser welding. The method includes performing a two-dimensionally locally resolved detection of radiation that is emitted by a solidified molten mass that is adjacent to a liquid melting bath. The method also includes determining at least one characteristic value for heat dissipation in the solidified molten mass by evaluating the detected radiation along at least one profile-section of the solidified molten mass, and detecting a defect in the weld seam by comparing the at least one characteristic value with at least one reference value.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: February 23, 2016
    Assignee: TRUMPF Werkzeugmaschinen GmbH + Co. KG
    Inventors: Dieter Pfitzner, Tim Hesse, Winfried Magg
  • Patent number: 9089926
    Abstract: A method for monitoring a processing region of a workpiece on which laser processing is being carried out, in which method the radiation emitted by the processing region is detected by a detector system in a space-resolved manner, wherein the radiation of the processing region is detected for each elemental area of the processing region imaged onto the detector system at least two wavelengths simultaneously. Accurate process monitoring may thereby be carried out.
    Type: Grant
    Filed: November 4, 2006
    Date of Patent: July 28, 2015
    Assignee: TRUMPF Werkzeugmaschinen GmbH + Co. KG
    Inventors: Dieter Pfitzner, Tim Hesse, Winfried Magg
  • Publication number: 20140269816
    Abstract: A method for detecting defect in a weld seam during laser welding. The method includes performing a two-dimensionally locally resolved detection of radiation that is emitted by a solidified molten mass that is adjacent to a liquid melting bath. The method also includes determining at least one characteristic value for heat dissipation in the solidified molten mass by evaluating the detected radiation along at least one profile-section of the solidified molten mass, and detecting a defect in the weld seam by comparing the at least one characteristic value with at least one reference value.
    Type: Application
    Filed: May 28, 2014
    Publication date: September 18, 2014
    Applicant: TRUMPF WERKZEUGMASCHINEN GMBH + CO. KG
    Inventors: Dieter Pfitzner, Tim Hesse, Winfried Magg
  • Patent number: 8777482
    Abstract: A method for detecting defect in a weld seam during laser welding. The method includes performing a two-dimensionally locally resolved detection of radiation that is emitted by a solidified molten mass that is adjacent to a liquid melting bath. The method also includes determining at least one characteristic value for heat dissipation in the solidified molten mass by evaluating the detected radiation along at least one profile-section of the solidified molten mass, and detecting a defect in the weld seam by comparing the at least one characteristic value with at least one reference value.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: July 15, 2014
    Assignee: TRUMPF Werkzeugmaschinen GmbH + Co. KG
    Inventors: Dieter Pfitzner, Tim Hesse, Winfried Magg
  • Patent number: 8546721
    Abstract: A course of a position of a positioning device is determined as a laser beam welds a workpiece at a focus area of the laser beam. The positioning device is configured to position the focus area of a laser beam on a workpiece such that a joint is formed on the workpiece. A course of the joint on the workpiece from the determined course of the position of the positioning device is estimated, and a deviation between the determined course of the position of the positioning device and the estimated course of the joint on the workpiece is calculated. The deviation represents a parameter related to the precision of the seam position control.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: October 1, 2013
    Assignee: TRUMPF Werkzeugmaschinen GmbH + Co. KG
    Inventors: Tim Hesse, Dieter Pfitzner, Winfried Magg
  • Publication number: 20100134628
    Abstract: The invention relates to a method for monitoring a processing region of a workpiece (10) on which laser processing is being carried out, in which method the radiation emitted by the processing region (11) is detected by a detector system (22) in a space-resolved manner, wherein the radiation of the processing region (11) is detected for each elemental area of the processing region (11) imaged onto the detector system at least two wavelengths simultaneously. Accurate process monitoring may thereby be carried out.
    Type: Application
    Filed: November 4, 2006
    Publication date: June 3, 2010
    Applicant: TRUMPF WERKZEUGMASCHINEN GMBH + CO. KG
    Inventors: Dieter Pfitzner, Tim Hesse, Winfried Magg
  • Publication number: 20100086003
    Abstract: A method for detecting defect in a weld seam during laser welding. The method includes performing a two-dimensionally locally resolved detection of radiation that is emitted by a solidified molten mass that is adjacent to a liquid melting bath. The method also includes determining at least one characteristic value for heat dissipation in the solidified molten mass by evaluating the detected radiation along at least one profile-section of the solidified molten mass, and detecting a defect in the weld seam by comparing the at least one characteristic value with at least one reference value.
    Type: Application
    Filed: November 24, 2009
    Publication date: April 8, 2010
    Applicant: TRUMPF WERKZEUGMASCHINEN GMBH + CO. KG
    Inventors: Dieter Pfitzner, Tim Hesse, Winfried Magg
  • Publication number: 20090145888
    Abstract: A first position of a joint site on a workpiece is detected with a sensor device. The first position is in a first measurement zone in front of a laser beam incident on the workpiece. The second position is in a second measurement zone at the position of the laser beam, and the third position is in a third measurement zone behind the position of the laser beam. One or more of a second position and a third position of the joint site is detected. The position of the laser beam incident on the workpiece is detected. The first, and one or more of the second and third positions are compared to the position of the laser beam, and, based on the comparison, one or more of a laser machining head configured to direct the laser beam onto the workpiece and the sensor device are adjusted relative to the workpiece.
    Type: Application
    Filed: November 19, 2008
    Publication date: June 11, 2009
    Applicant: TRUMPF WERKZEUGMASCHINEN GMBH + CO. KG
    Inventors: Tim Hesse, Dieter Pfitzner, Winfried Magg
  • Publication number: 20090139968
    Abstract: A course of a position of a positioning device is determined as a laser beam welds a workpiece at a focus area of the laser beam. The positioning device is configured to position the focus area of a laser beam on a workpiece such that a joint is formed on the workpiece. A course of the joint on the workpiece from the determined course of the position of the positioning device is estimated, and a deviation between the determined course of the position of the positioning device and the estimated course of the joint on the workpiece is calculated. The deviation represents a parameter related to the precision of the seam position control.
    Type: Application
    Filed: November 19, 2008
    Publication date: June 4, 2009
    Applicant: TRUMPF Werkzeugmaschinen GmbH + Co. KG
    Inventors: Tim Hesse, Dieter Pfitzner, Winfried Magg