Patents by Inventor Winsor Lam

Winsor Lam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140046475
    Abstract: Methods and apparatus for processing a substrate in a process chamber, include receiving process control parameters for one or more devices from a process controller to perform a first chamber process, determining a time to send each of the process control parameters to the one or more devices, for each of the one or more devices, adjusting the determined time to send each of the process control parameters using specific signal process delays associated with each of the one or more devices, and sending the process control parameters to each of the one or more devices at the adjusted times to perform the first chamber process, wherein the synchronization controller includes one or more output channels, each channel directly coupled to one of the one or more devices.
    Type: Application
    Filed: August 9, 2012
    Publication date: February 13, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: WINSOR LAM, KEITH A. MILLER, CARL JOHNSON, MARTIN LEE RIKER, YE XU
  • Patent number: 8476162
    Abstract: Methods for forming layers on a substrate are provided herein. In some embodiments, methods of forming layers on a substrate disposed in a process chamber may include depositing a barrier layer comprising titanium within one or more features in the substrate; and sputtering a material from a target in the presence of a plasma formed from a process gas by applying a DC power to the target, maintaining a pressure of less than about 500 mTorr within the process chamber, and providing up to about 5000 W of a substrate bias RF power to deposit a seed layer comprising the material atop the barrier layer.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: July 2, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Tae Hong Ha, Winsor Lam, Tza-Jing Gung, Joung Joo Lee
  • Publication number: 20120108058
    Abstract: Methods for forming layers on a substrate are provided herein. In some embodiments, methods of forming layers on a substrate disposed in a process chamber may include depositing a barrier layer comprising titanium within one or more features in the substrate; and sputtering a material from a target in the presence of a plasma formed from a process gas by applying a DC power to the target, maintaining a pressure of less than about 500 mTorr within the process chamber, and providing up to about 5000 W of a substrate bias RF power to deposit a seed layer comprising the material atop the barrier layer.
    Type: Application
    Filed: October 7, 2011
    Publication date: May 3, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: TAE HONG HA, WINSOR LAM, TZA-JING GUNG, JOUNG JOO LEE
  • Patent number: 8168543
    Abstract: Methods of forming a barrier layer are provided. In one embodiment, the method includes providing a substrate into a physical vapor deposition (PVD) chamber, supplying at least two reactive gases and an inert gas into the PVD chamber, sputtering a source material from a target disposed in the processing chamber in the presence of a plasma formed from the gas mixture, and forming a metal containing dielectric layer on the substrate from the source material. In another embodiment, the method includes providing a substrate into a PVD chamber, supplying a reactive gas the PVD chamber, sputtering a source material from a target disposed in the PVD chamber in the presence of a plasma formed from the reactive gas, forming a metal containing dielectric layer on the substrate from the source material, and post treating the metal containing layer in presence of species generated from a remote plasma chamber.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: May 1, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Xinyu Fu, Keyvan Kashefizadeh, Ashish Subhash Bodke, Winsor Lam, Yiochiro Tanaka, Wonwoo Kim
  • Patent number: 7829456
    Abstract: Methods for processing substrates are provided herein. In some embodiments, a method for processing substrates includes providing to a process chamber a substrate comprising an exposed dielectric layer having a feature formed therein. A mask layer comprising titanium nitride may be selectively deposited atop corners of the feature. A barrier layer may be selectively deposited atop the mask layer and into a bottom portion of the feature. The barrier layer deposited on the bottom portion of the feature may be etched to redistribute at least a portion of the barrier layer onto sidewalls of the feature.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: November 9, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Winsor Lam, Tza-Jing Gung, Hong S. Yang, Adolph Miller Allen
  • Patent number: 7767064
    Abstract: A dual magnetron for plasma sputtering including a source magnetron and an auxiliary magnetron, each of which rotate about the center of the target at respective radii. The positions of the magnetron can be moved in complementary radial directions between sputter deposition and target cleaning. The magnetrons have different characteristics of size, strength, and imbalance. The source magnetron is smaller, stronger, and unbalanced source magnetron and is positioned near the edge of the wafer in sputter deposition and etching. The auxiliary magnetron is larger, weak, and more balanced and used for cleaning the center of the target and guiding sputter ions from the source magnetron in sputter deposition. Each magnetron may have its plasma shorted out in its radially outer position.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: August 3, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Cristopher M. Pavloff, Winsor Lam, Tza-Jing Gung, Hong S. Yang, Ilyoung Richard Hong
  • Publication number: 20100105204
    Abstract: Methods for processing substrates are provided herein. In some embodiments, a method for processing substrates includes providing to a process chamber a substrate comprising an exposed dielectric layer having a feature formed therein. A mask layer comprising titanium nitride may be selectively deposited atop corners of the feature. A barrier layer may be selectively deposited atop the mask layer and into a bottom portion of the feature. The barrier layer deposited on the bottom portion of the feature may be etched to redistribute at least a portion of the barrier layer onto sidewalls of the feature.
    Type: Application
    Filed: October 23, 2008
    Publication date: April 29, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: WINSOR LAM, TZA-Jing Gung, Hong S. Yang, Adolph Miller Allen
  • Publication number: 20100006425
    Abstract: Methods of forming a barrier layer are provided. In one embodiment, the method includes providing a substrate into a physical vapor deposition (PVD) chamber, supplying at least two reactive gases and an inert gas into the PVD chamber, sputtering a source material from a target disposed in the processing chamber in the presence of a plasma formed from the gas mixture, and forming a metal containing dielectric layer on the substrate from the source material. In another embodiment, the method includes providing a substrate into a PVD chamber, supplying a reactive gas the PVD chamber, sputtering a source material from a target disposed in the PVD chamber in the presence of a plasma formed from the reactive gas, forming a metal containing dielectric layer on the substrate from the source material, and post treating the metal containing layer in presence of species generated from a remote plasma chamber.
    Type: Application
    Filed: September 18, 2009
    Publication date: January 14, 2010
    Inventors: Xinyu Fu, Keyvan Kashefizadeh, Ashish Subhash Bodke, Winsor Lam, Yiochiro Tanaka, Wonwoo Kim
  • Patent number: 7618893
    Abstract: Methods of forming a barrier layer are provided. In one embodiment, the method includes providing a substrate into a physical valor deposition (PVD) chamber, supplying at least two reactive gases and an inert gas into the PVD chamber, sputtering a source material from a target disposed in the processing chamber in the presence of a plasma formed from the gas mixture, and forming a metal containing dielectric layer on the substrate from the source material. In another embodiment, the method includes providing a substrate into a PVD chamber, supplying a reactive gas the PVD chamber, sputtering a source material from a target disposed in the PVD chamber in the presence of a plasma formed from the reactive gas, forming a metal containing dielectric layer on the substrate from the source material, and post treating the metal containing layer in presence of species generated from a remote plasma chamber.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: November 17, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Xinyu Fu, Keyvan Kashefizadeh, Ashish Subhash Bodke, Winsor Lam, Yiochiro Tanaka, Wonwoo Kim
  • Publication number: 20090227105
    Abstract: Methods of forming a barrier layer are provided. In one embodiment, the method includes providing a substrate into a physical vapor deposition (PVD) chamber, supplying at least two reactive gases and an inert gas into the PVD processing chamber, sputtering a source material from a target disposed in the processing chamber in the presence of a plasma formed from the gas mixture, and forming a metal containing dielectric layer on the substrate from the source material. In another embodiment, the method includes providing a substrate into a PVD chamber, supplying a reactive gas the PVD chamber, sputtering a source material from a target disposed in the PVD chamber in the presence of a plasma formed from the reactive gas, forming a metal containing dielectric layer on the substrate from the source material, and post treating the metal containing layer in presence of species generated from a remote plasma chamber.
    Type: Application
    Filed: March 4, 2008
    Publication date: September 10, 2009
    Inventors: Xinyu Fu, Keyvan Kashefizadeh, Ashish Subhash Bodke, Winsor Lam, Yiochiro Tanaka, Wonwoo Kim
  • Publication number: 20080099329
    Abstract: A dual magnetron for plasma sputtering including a source magnetron and an auxiliary magnetron, each of which rotate about the center of the target at respective radii. The positions of the magnetron can be moved in complementary radial directions between sputter deposition and target cleaning. The magnetrons have different characteristics of size, strength, and imbalance. The source magnetron is smaller, stronger, and unbalanced source magnetron and is positioned near the edge of the wafer in sputter deposition and etching. The auxiliary magnetron is larger, weak, and more balanced and used for cleaning the center of the target and guiding sputter ions from the source magnetron in sputter deposition. Each magnetron may have its plasma shorted out in its radially outer position.
    Type: Application
    Filed: October 27, 2006
    Publication date: May 1, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Cristopher M. Pavloff, Winsor Lam, Tza-Jing Gung, Hong S. Yang, Ilyoung Richard Hong