Patents by Inventor Wipul Jayasekara

Wipul Jayasekara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9054308
    Abstract: A fabrication process for a resistance-switching memory cell uses metal oxide as a resistance-switching material. A metal oxide film having an initial stoichiometry is deposited on an electrode using atomic layer deposition. A changed stoichiometry is provided for a portion of the metal oxide film using a plasma reduction process, separate from the atomic layer deposition, and another electrode is formed adjacent to the changed stoichiometry portion. The film deposition and the plasma reduction can be performed in separate chambers where conditions such as temperature are optimized. The metal oxide film may be deposited on a vertical sidewall in a vertical bit line 3d memory device. Optionally, the mean free path of hydrogen ions during the plasma reduction process is adjusted to increase the uniformity of the vertical metal oxide film. The adjustment can involve factors such as RF power, pressure and a bias of the wafer.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: June 9, 2015
    Assignee: SanDisk 3D LLC
    Inventors: Tong Zhang, Timothy James Minvielle, Chu-Chen Fu, Wipul Jayasekara
  • Patent number: 7848061
    Abstract: A current perpendicular to plane (CPP) magnetoresistive sensor having a free layer that is magnetically coupled with a magnetic shield, thereby providing the free layer with a large effective flux guide. Sensor performance is improved by virtually eliminating demagnetization fields at the back edge of the sensor. The free layer can be magnetically connected with the shield by a magnetic coupling layer or shunt structure that is disposed between the free layer and the shield behind the capping layer.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: December 7, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Wipul Jayasekara, Vladimir Nikitin
  • Patent number: 7640650
    Abstract: A method of making a magnetoresistive sensor includes defining a track width of a magnetoresistive element stack of the sensor. Further, processes of the method enable depositing of hard magnetic bias material on each side of the stack. These processes may permit both milling of excess depositions of the material outside of regions where the hard magnetic bias material is desired via use of a photoresist and making the material have a planar surface via chemical mechanical polishing, which also removes the material on top of the stack. The method includes removing excess material outside of the photoresist, wherein the excess material includes part of the hard bias layer, while a portion of the hard bias layer remains directly above the MR sensor stack.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: January 5, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Satoru Araki, Ying Hong, Wipul Jayasekara, Ming Jiang
  • Publication number: 20090168253
    Abstract: A method of making a magnetoresistive sensor includes defining a track width of a magnetoresistive element stack of the sensor. Further, processes of the method enable depositing of hard magnetic bias material on each side of the stack. These processes may permit both milling of excess depositions of the material outside of regions where the hard magnetic bias material is desired via use of a photoresist and making the material have a planar surface via chemical mechanical polishing, which also removes the material on top of the stack.
    Type: Application
    Filed: December 28, 2007
    Publication date: July 2, 2009
    Inventors: Satoru Araki, Ying Hong, Wipul Jayasekara, Ming Jiang
  • Publication number: 20080062584
    Abstract: A method for manufacturing a magnetoresistive sensor having improved pinned layer stability at small track widths. The sensor has substantially vertical side walls that define the track width of the sensor. The free layer terminates at the substantially vertical side walls, but the pinned layer structure or a portion thereof extends beyond the track width region into the field. The extended pinned layer structure provides improved resistance to amplitude flipping, while allowing the track width to remain small.
    Type: Application
    Filed: November 12, 2007
    Publication date: March 13, 2008
    Inventors: James Freitag, Wipul Jayasekara, Mustafa Pinarbasi
  • Publication number: 20080026254
    Abstract: A magnetic structure, such as a pole tip, and method for forming the same includes forming a pole tip layer of magnetic material. A layer of polyimide precursor material is added above the pole tip layer and cured. A silicon-containing resist layer is added above the layer of polyimide precursor material and patterned. The resist layer is exposed to oxygen plasma for converting the resist into a glass-like material. Exposed portions of the cured polyimide precursor material are removed for exposing portions of the pole tip layer. The exposed portions of the pole tip layer are removed for forming a pole tip. Chemical mechanical polishing (CMP) can then be performed to remove any unwanted material remaining above the pole tip.
    Type: Application
    Filed: August 9, 2007
    Publication date: January 31, 2008
    Inventors: Richard Hsiao, Wipul Jayasekara, Jeffrey Lille
  • Publication number: 20080020240
    Abstract: A method is presented for fabricating a CPP read head having a CPP read head sensor and a hard bias layer which includes forming a strip of sensor material in a sensor material region, and depositing strips of fast-milling dielectric material in first and second fast-milling dielectric material regions adjacent to the sensor material region. A protective layer and a layer of masking material are deposited on the strip of sensor material and the strips of fast-milling dielectric material to provide masked areas and exposed areas. A shaping source, such as an ion milling source, is provided which shapes the exposed areas. Hard bias material is then deposited on the regions of sensor material and fast-milling dielectric material to form caps on each of these regions. The caps of hard bias material and the masking material are then removed from each of these regions.
    Type: Application
    Filed: August 7, 2007
    Publication date: January 24, 2008
    Inventors: Robert Fontana, Ying Hong, Wipul Jayasekara, Howard Zolla
  • Publication number: 20070217080
    Abstract: A current perpendicular to plane (CPP) magnetoresistive sensor having a free layer that is magnetically coupled with a magnetic shield, thereby providing the free layer with a large effective flux guide. Sensor performance is improved by virtually eliminating demagnetization fields at the back edge of the sensor. The free layer can be magnetically connected with the shield by a magnetic coupling layer or shunt structure that is disposed between the free layer and the shield behind the capping layer.
    Type: Application
    Filed: March 14, 2006
    Publication date: September 20, 2007
    Inventors: Wipul Jayasekara, Vladimir Nikitin
  • Publication number: 20070188939
    Abstract: In a CPP MR device such as a tunnel magnetoresistive (TMR) device, shoulders that have a magnetic moment that is matched to the magnetic moments of the free layer extend between the free layer and the S2 shield to provide an electrical path from one shoulder, through the shield, to the other shoulder for dissipating edge charges. Thus, a CPP MR device may include a seed stack, a pinned stack on the seed stack, and a tunnel barrier on the pinned stack. A free stack may be on the tunnel barrier, and the free stack can include a free sublayer separated from a magnetic shield and a path for dissipating edge charges in the free stack through the magnetic shield.
    Type: Application
    Filed: February 10, 2006
    Publication date: August 16, 2007
    Inventors: Robert Beach, Wipul Jayasekara, Vladimir Nikitin
  • Publication number: 20070081279
    Abstract: A current perpendicular to plane (CPP) sensor and method of manufacturing such a sensor that prevents current shunting at the sides of the barrier/spacer layer due to redeposited material. A first ion mill is performed to remove at least the free layer. A quick glancing ion mill can be performed to remove the small amount of redep that may have accumulated on the sides of the free layer and barrier/spacer layer. Then an insulation layer is deposited to protect the sides of the free layer/barrier layer during subsequent manufacturing which can include further ion milling to define the rest of the sensor and another glancing ion mill to remove the redep formed by the further ion milling. This results in a sensor having no current shunting at the sides of the sensor and having no damage to the sensor layers.
    Type: Application
    Filed: October 6, 2005
    Publication date: April 12, 2007
    Inventors: Ying Hong, Wipul Jayasekara
  • Publication number: 20070076328
    Abstract: Recording heads having an ESD shunt trace and methods of fabricating the same are disclosed. A recording head of the invention includes a first shield, a second shield, an MR read element between the first shield and the second shield, and an ESD shunt trace. The ESD shunt trace is formed from MR layers and is connected to the MR read element and one or both of the first shield and the second shield. One or more of the MR layers forming the ESD shunt trace are processed to reduce the MR properties of the ESD shunt trace. Examples of processing the ESD shunt trace are ion milling, ion implantation, oxidizing, reactive ion etching, sputter etching, wet chemical etching, etc.
    Type: Application
    Filed: September 30, 2005
    Publication date: April 5, 2007
    Inventors: Wipul Jayasekara, Howard Zolla
  • Publication number: 20070068797
    Abstract: A method for providing an endpoint layer for ion milling of top of read sensor having top lead connection and sensor formed thereby. A cap layer includes a thin layer of an endpoint detection material, such as a conductive or insulating material, that is inserted in the cap layer. The endpoint detection material provides a good signal for endpoint detection during ion milling of the of the cap layer.
    Type: Application
    Filed: September 29, 2005
    Publication date: March 29, 2007
    Inventor: Wipul Jayasekara
  • Publication number: 20070048624
    Abstract: An embodiment of the invention is a magnetic head with overlaid lead pads that contact the top surface of the sensor between the hardbias structures and do not contact the hardbias structures which are electrically insulated from direct contact with the sensor. The lead pad contact area on the top of the sensor is defined by sidewall deposition of a conductive material to form leads pads on a photoresist prior to formation of the remainder of the leads. The conductive material for the lead pads is deposited at a shallow angle to maximize the sidewall deposition on the photoresist, then ion-milled at a high angle to remove the conductive material from the field while leaving the sidewall material. An insulation layer is deposited on the lead material at a high angle, then milled at a shallow angle to remove insulation from the sidewall.
    Type: Application
    Filed: August 24, 2005
    Publication date: March 1, 2007
    Inventors: Tsung Chen, Frederick Dill, James Frietag, Kuok San Ho, Wipul Jayasekara, Kim Lee, Mustafa Pinarbasi, Ching Tsang, Pactrick Webb
  • Publication number: 20070028441
    Abstract: A method for fabricating a read head sensor for a magnetic disk drive is presented. The method includes providing a layered wafer stack to be shaped, where the layered wafer stack includes a free layer, a barrier layer and a pinned layer. A single- or multi-layered photoresist mask is formed upon the layered wafer stack to be shaped. A material removal source is provided and used to perform a partial depth material removal within a partial depth material removal range which extends from the free layer to within the pinned layer to a partial depth material removal endpoint. In various embodiments, this depth endpoint lies at or within the barrier layer or within but not through the pinned layer.
    Type: Application
    Filed: August 5, 2005
    Publication date: February 8, 2007
    Inventors: Marie-Claire Cyrille, Ying Hong, Wipul Jayasekara
  • Publication number: 20070026538
    Abstract: In one embodiment, a method of forming a CPP sensor comprises providing a sensor having a hard mask disposed on a left side thereof and a right side with a portion of the sensor material removed therefrom, the hard mask having a vertical surface; forming a right dielectric layer including a vertical surface disposed adjacent the vertical surface of the hard mask; forming a right hard bias layer or right side shields on the right dielectric layer; removing the hard mask to expose the left side of the sensor; forming an electrically conductive layer on the sensor, the electrically conductive layer including a vertical electrically conductive portion disposed adjacent the vertical surface of the right dielectric layer; removing the electrically conductive layer except the vertical electrically conductive portion; removing a portion of the sensor material from the left side of the sensor; forming a left dielectric layer on the left side of the sensor, the left dielectric layer including a vertical surface dispose
    Type: Application
    Filed: July 29, 2005
    Publication date: February 1, 2007
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Wipul Jayasekara
  • Publication number: 20060256482
    Abstract: A method for fabricating magnetic side shields for an MR sensor of a magnetic head. Following the deposition of MR sensor layers, a first DLC layer is deposited. Milling mask layers are then deposited, and outer portions of the milling mask layers are removed such that a remaining central portion of the milling mask layers is formed having straight sidewalls and no undercuts. Outer portions of the sensor layers are then removed such that a relatively thick remaining central portion of the milling mask resides above the remaining sensor layers. A thin electrical insulation layer is deposited, followed by the deposition of magnetic side shields. A second DLC layer is deposited and the remaining mask layers are then removed utilizing a chemical mechanical polishing (CMP) liftoff step. Thereafter, the first DLC layer and the second DLC layer are removed and a second magnetic shield layer is then fabricated thereabove.
    Type: Application
    Filed: May 10, 2005
    Publication date: November 16, 2006
    Inventors: Satoru Araki, Robert Beach, Marie-Claire Cyrille, Wipul Jayasekara, Quang Le, Jui-Lung Li, David Seagle, Howard Zolla
  • Patent number: 7123455
    Abstract: A magnetic tunnel junction (MTJ) sensor in which the free layer longitudinal biasing elements are coupled, without insulation, to the free layer outside of the MTJ stack to provide reliable non-shunting MTJ free layer stabilization without extremely thin dielectric layers. In one embodiment, hard magnetic (HM) layers are disposed in contact with the free layer outside of and separated from the MTJ stack active region by a thick dielectric layer. In another embodiment, antiferromagnetic (AFM) bias layers are disposed in contact with the free layer outside of and separated from the MTJ stack active region by a thick dielectric layer. In other embodiments, nonconductive HM layers are disposed either in contact with the free layer outside of the MTJ stack active region and/or in abutting contact with the MTJ stack active region.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: October 17, 2006
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Wipul Jayasekara
  • Publication number: 20060218776
    Abstract: A magnetic head fabrication process in which a stencil layer is deposited upon a plurality of sensor layers. A photoresist mask in the desired read track width is fabricated upon the stencil layer. A reactive ion milling step is then conducted to remove the unmasked portions of the stencil layer. Where the stencil layer is composed of an organic compound, such as Duramide and/or diamond-like-carbon, a reactive ion milling step utilizing oxygen species produces a stencil of the present invention having exceptionally straight side walls with practically no undercuts. Thereafter, an ion milling step is undertaken in which the sensor layers that are not covered by the stencil are removed. The accurately formed stencil results in correspondingly accurately formed side walls of the remaining central sensor layers. A magnetic head sensor structure having a desired read track width and accurately formed side walls is thus fabricated.
    Type: Application
    Filed: March 30, 2005
    Publication date: October 5, 2006
    Inventors: Michael Feldbaum, Wipul Jayasekara, Mustafa Pinarbasi
  • Publication number: 20060215313
    Abstract: Applicant discloses a method for fabricating a magnetic write head with a coil with a high aspect ratio using a Chemical Vapor Deposition process such as Atomic Layer Deposition (ALD), High Speed ALD, Plasma Enhanced ALD (PEALD), Plasma Enhanced Chemical Vapor Deposition (PECVD) or Low Pressure Chemical Vapor Deposition (LPCVD) to form encapsulating films over the coils without voids. Materials which can be used for encapsulation include Al2O3, SiO2, AlN, Ta2O5, HfO2, ZrO2, and YtO3. The use of an ultra-conformal deposition process allows the pitch of the coils to be smaller than it is possible in the prior art. The method according to the invention also allows materials with a smaller coefficient of thermal expansion than hardbake photoresist to be used with resulting improvements in thermal protrusion characteristics.
    Type: Application
    Filed: March 25, 2005
    Publication date: September 28, 2006
    Inventors: Richard Hsiao, Wipul Jayasekara, Howard Zolla
  • Publication number: 20060207966
    Abstract: A method is presented for fabricating a read head having a read head sensor and a hard bias/lead layer which includes depositing a strip of sensor material in a sensor material region, and depositing strips of fast-milling dielectric material in first and second fast-milling dielectric material regions adjacent to the sensor material region. A protective layer and a layer of masking material is deposited on the strip of sensor material and the strips of fast-milling dielectric material to provide masked areas and exposed areas. A shaping source, such as an ion milling source, is provided which shapes the exposed areas. Hard bias/lead material is then deposited on the regions of sensor material and fast-milling dielectric material to form first and second leads and a cap on each of these regions. The cap of hard bias/lead material and the masking material is then removed from each of these regions.
    Type: Application
    Filed: March 15, 2005
    Publication date: September 21, 2006
    Inventors: Shawn Hernandez, Wipul Jayasekara, Timothy Minvielle, Benjamin Wang, Howard Zolla