Patents by Inventor Wlodzimierz W. Zmierczak

Wlodzimierz W. Zmierczak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150165408
    Abstract: A fluid-sparged helical channel reactor can include a constrained flow unit located within a reactor body. The unit has an inner wall and an outer wall which produces a helical constrained flow along a substantially enclosed helical flow path around an axial interior volume. At least part of the outer wall includes a sparging portion to allow fluid reactant to be sparged into the helical constrained flow. A liquid inlet fluidly connected to the reactor body and configured to allow addition of a liquid into the enclosed helical flow path. A sparging fluid inlet is fluidly connected to the reactor body which supplies a sparging fluid to the sparging portion of the constrained-flow unit. A liquid outlet fluidly is connected to the reactor body to allow removal of liquid from the constrained-flow unit. A gas outlet is fluidly associated with the enclosed helical flow path to allow removal of gases from the enclosed helical flow path.
    Type: Application
    Filed: November 5, 2014
    Publication date: June 18, 2015
    Inventors: Wlodzimierz W. Zmierczak, Jan D. Miller, Raj Rajamani, Steven Messiter, Nicholas B. Drinnan, Edward Choros
  • Patent number: 8980196
    Abstract: A method of reacting compounds can include directing a liquid into a helical constrained flow (37) having an inner circumferential flow surface and an outer circumferential flow surface. The helical constrained flow (37) can be formed around an axial interior volume (38). At least a portion of the helical constrained flow can be exposed to a sparging portion (35) to allow a fluid to be sparged into the liquid along the helical constrained flow (37). The fluid reactant can be sparged through the helical constrained flow so as to form a fluid product.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: March 17, 2015
    Assignees: University of Utah Research Foundation, Ambre Energy Limited
    Inventors: Wlodzimierz W. Zmierczak, Jan Dean Miller, Raj Rajamani, Steven Messiter, Nicholas Drinnan, Edward Choros
  • Patent number: 8299310
    Abstract: Processes for conversion of lignin to products such as phenolic compounds and biofuels prepared from such phenolic compounds are disclosed and described. A process for conversion of a lignin material to bio-fuels can include subjecting the lignin material to a base catalyzed depolymerization reaction to produce a partially depolymerized lignin. The partially depolymerized lignin can then be subjected to a stabilization/partial hydrodeoxygenation reaction to form a partially hydrodeoxygenated product. Following partial hydrodeoxygenation, the partially hydrodeoxygenated product can be reacted in a hydroprocessing step to form a bio-fuel. Each of these reaction steps can be performed in single or multiple steps, depending on the design of the process. The production of an intermediate partially hydrodeoxygenation product and subsequent reaction thereof can significantly reduce or eliminate reactor plugging and catalyst coking.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: October 30, 2012
    Assignee: University of Utah Research Foundation
    Inventors: Wlodzimierz W. Zmierczak, Jan D. Miller
  • Publication number: 20120149944
    Abstract: A method of reacting compounds can include directing a liquid into a helical constrained flow (37) having an inner circumferential flow surface and an outer circumferential flow surface. The helical constrained flow (37) can be formed around an axial interior volume (38). At least a portion of the helical constrained flow can be exposed to a sparging portion (35) to allow a fluid to be sparged into the liquid along the helical constrained flow (37). The fluid reactant can be sparged through the helical constrained flow so as to form a fluid product.
    Type: Application
    Filed: March 15, 2010
    Publication date: June 14, 2012
    Applicants: University of Utah, Ambre Energy Limited
    Inventors: Wlodzimierz W. Zmierczak, Jan Dean Miller, Raj Rajamani, Steven Messiter, Nicholas Drinnan, Edward Choros
  • Publication number: 20110237838
    Abstract: Processes for conversion of lignin to products such as phenolic compounds and biofuels prepared from such phenolic compounds are disclosed and described. A process for conversion of a lignin material to bio-fuels can include subjecting the lignin material to a base catalyzed depolymerization reaction to produce a partially depolymerized lignin. The partially depolymerized lignin can then be subjected to a stabilization/partial hydrodeoxygenation reaction to form a partially hydrodeoxygenated product. Following partial hydrodeoxygenation, the partially hydrodeoxygenated product can be reacted in a hydroprocessing step to form a bio-fuel. Each of these reaction steps can be performed in single or multiple steps, depending on the design of the process. The production of an intermediate partially hydrodeoxygenation product and subsequent reaction thereof can significantly reduce or eliminate reactor plugging and catalyst coking.
    Type: Application
    Filed: May 6, 2011
    Publication date: September 29, 2011
    Applicant: University of Utah Research Foundation
    Inventors: Wlodzimierz W. Zmierczak, Jan D. Miller
  • Patent number: 7964761
    Abstract: Processes for conversion of lignin to liquid products such as bio-fuels and fuel additives are disclosed and described. A process for conversion of a lignin material to bio-fuels can include subjecting the lignin material to a base catalyzed depolymerization reaction to produce a partially depolymerized lignin. The partially depolymerized lignin can then be subjected to a stabilization/partial hydrodeoxygenation reaction to form a partially hydrodeoxygenated product. Following partial hydrodeoxygenation, the partially hydrodeoxygenated product can be reacted in a hydroprocessing step to form a bio-fuel. Each of these reaction steps can be performed in single or multiple steps, depending on the design of the process. The production of an intermediate partially hydrodeoxygenation product and subsequent reaction thereof can significantly reduce or eliminate reactor plugging and catalyst coking.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: June 21, 2011
    Assignee: University of Utah Research Foundation
    Inventors: Wlodzimierz W. Zmierczak, Jan D. Miller
  • Patent number: 7429621
    Abstract: A method of synthesizing and reacting compounds in a cyclone reactor (10) is disclosed and described. A liquid carrier can be provided which can include solid catalyst particles, liquid catalysts, and/or liquid reactants. The liquid carrier can be formed into a swirl layer (38) within the cyclone reactor (10). A reactant composition including at least one reactant can also be injected through at least a portion of the swirl layer (38) such that at least a portion of the reactant is converted to a reaction product.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: September 30, 2008
    Assignee: University of Utah Research Foundation
    Inventors: Jan D. Miller, Jan Hupka, Wlodzimierz W. Zmierczak
  • Publication number: 20030115792
    Abstract: The invention includes a process for converting biomass into C7-C10 alkylbenzenes useful as blending components for petroleum or petroleum derived fuels. The process includes a base catalyzed depolymerization of lignin within the biomass, followed by hydroprocessing of the depolymerized lignin to C7-C10 alkylbenzenes. The C7-C10 alkylbenzenes are useful for enhancing the octane level of petroleum or petroleum-derived fuels, such as gasoline. In addition, the C7-C10 alkylbenzenes are useful as intermediates in the production of numerous organic chemicals.
    Type: Application
    Filed: February 21, 2002
    Publication date: June 26, 2003
    Inventors: Joseph S. Shabtai, Wlodzimierz W. Zmierczak, Esteban Chornet, David Johnson
  • Publication number: 20030100807
    Abstract: The invention includes a process for converting biomass into C7-C10 alkylbenzenes useful as blending components for petroleum or petroleum derived fuels. The process includes a base catalyzed depolymerization of lignin within the biomass, followed by hydroprocessing of the depolymerized lignin to C7-C10 alkylbenzenes. The C7-C10 alkylbenzenes are useful for enhancing the octane level of petroleum or petroleum-derived fuels, such as gasoline. In addition, the C7-C10 alkylbenzenes are useful as intermediates in the production of numerous organic chemicals.
    Type: Application
    Filed: October 5, 2001
    Publication date: May 29, 2003
    Inventors: Joseph S. Shabtai, Wlodzimierz W. Zmierczak, Esteban Chornet, David Johnson
  • Patent number: 6172272
    Abstract: A high-yield process for converting lignin into reformulated, partially oxygenated gasoline compositions of high quality is provided. The process is a two-stage catalytic reaction process that produces a reformulated, partially oxygenated gasoline product with a controlled amount of aromatics. In the first stage of the process, a lignin feed material is subjected to a base-catalyzed depolymerization reaction, followed by a selective hydrocracking reaction which utilizes a superacid catalyst to produce a high oxygen-content depolymerized lignin product mainly composed of alkylated phenols, alkylated alkoxyphenols, and alkylbenzenes.
    Type: Grant
    Filed: August 18, 1999
    Date of Patent: January 9, 2001
    Assignee: The University of Utah
    Inventors: Joseph S. Shabtai, Wlodzimierz W. Zmierczak, Esteban Chornet
  • Patent number: 5959167
    Abstract: A process for converting lignin into high-quality reformulated hydrocarbon gasoline compositions in high yields is disclosed. The process is a two-stage, catalytic reaction process that produces a reformulated hydrocarbon gasoline product with a controlled amount of aromatics. In the first stage, a lignin material is subjected to a base-catalyzed depolymerization reaction in the presence of a supercritical alcohol as a reaction medium, to thereby produce a depolymerized lignin product. In the second stage, the depolymerized lignin product is subjected to a sequential two-step hydroprocessing reaction to produce a reformulated hydrocarbon gasoline product. In the first hydroprocessing step, the depolymerized lignin is contacted with a hydrodeoxygenation catalyst to produce a hydrodeoxygenated intermediate product.
    Type: Grant
    Filed: August 19, 1998
    Date of Patent: September 28, 1999
    Assignee: The University of Utah Research Foundation
    Inventors: Joseph S. Shabtai, Wlodzimierz W. Zmierczak, Esteban Chornet