Patents by Inventor WOEI-LIN WU
WOEI-LIN WU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10868421Abstract: An on-chip multiple-stage electrical overstress (EOS) protection device is disclosed. The protection device includes a surge protector having a first clamping voltage and a first electrostatic discharge (ESD) protector having a second clamping voltage lower than the first clamping voltage. The surge protector is electrically connected to the first ESD protector in parallel. The surge protector and the first ESD protector are electrically connected between a receiving terminal and a voltage terminal, and the receiving terminal is electrically connected to an internal circuit. When an electrical overstress (EOS) signal including an electrostatic discharge (ESD) signal and a surge signal appears at the receiving terminal, the first ESD protector and the surge protector are triggered on in turn to clamp a voltage received by the internal circuit.Type: GrantFiled: July 5, 2018Date of Patent: December 15, 2020Assignee: Amazing Microelectronic Corp.Inventors: James Jeng-Jie Peng, Woei-Lin Wu, Ryan Hsin-Chin Jiang
-
Patent number: 10662413Abstract: A composition comprising a recombinant DNA polymerase and 3?-esterified nucleotide analogues is provided. The recombinant DNA polymerase includes an amino acid sequence that is at least 90% homology with 9° N DNA polymerase (SEQ ID NO: 1), and the recombinant DNA polymerase includes at least two mutations at the positions corresponding to amino acid residues 141 and 143 of the 9° N DNA polymerase. A recombinant DNA polymerase is further provided. The recombinant DNA polymerase includes an amino acid sequence that is at least 90% homology with 9° N-III DNA polymerase (SEQ ID NO: 3), and the recombinant DNA polymerase includes one or two mutations at the positions corresponding to amino acid residue 480 and 486 of the 9° N-III DNA polymerase. A method of performing a polymerization reaction is also provided.Type: GrantFiled: October 31, 2017Date of Patent: May 26, 2020Assignee: PERSONAL GENOMICS, INC.Inventors: Shiuan-Woei Lin Wu, Ching-Wei Tsai, Ting-Yueh Tsai, Jyun-Yuan Huang, Chao-Chi Pan, Li-Chi Chang, Ching-Long Hwong
-
Publication number: 20200014200Abstract: An on-chip multiple-stage electrical overstress (EOS) protection device is disclosed. The protection device includes a surge protector having a first clamping voltage and a first electrostatic discharge (ESD) protector having a second clamping voltage lower than the first clamping voltage. The surge protector is electrically connected to the first ESD protector in parallel. The surge protector and the first ESD protector are electrically connected between a receiving terminal and a voltage terminal, and the receiving terminal is electrically connected to an internal circuit. When an electrical overstress (EOS) signal including an electrostatic discharge (ESD) signal and a surge signal appears at the receiving terminal, the first ESD protector and the surge protector are triggered on in turn to clamp a voltage received by the internal circuit.Type: ApplicationFiled: July 5, 2018Publication date: January 9, 2020Inventors: JAMES JENG-JIE PENG, WOEI-LIN WU, RYAN HSIN-CHIN JIANG
-
Publication number: 20180119115Abstract: A composition comprising a recombinant DNA polymerase and 3?-esterified nucleotide analogues is provided. The recombinant DNA polymerase includes an amino acid sequence that is at least 90% homology with 9° N DNA polymerase (SEQ ID NO: 1), and the recombinant DNA polymerase includes at least two mutations at the positions corresponding to amino acid residues 141 and 143 of the 9° N DNA polymerase. A recombinant DNA polymerase is further provided. The recombinant DNA polymerase includes an amino acid sequence that is at least 90% homology with 9° N-III DNA polymerase (SEQ ID NO: 3), and the recombinant DNA polymerase includes one or two mutations at the positions corresponding to amino acid residue 480 and 486 of the 9° N-III DNA polymerase. A method of performing a polymerization reaction is also provided.Type: ApplicationFiled: October 31, 2017Publication date: May 3, 2018Inventors: Shiuan-Woei LIN WU, Ching-Wei TSAI, Ting-Yueh TSAI, Jyun-Yuan HUANG, Chao-Chi PAN, Li-Chi CHANG, Ching-Long HWONG
-
Patent number: 9929151Abstract: A self-balanced diode device includes a substrate, a doped well, at least one first conductivity type heavily doped fin and at least two second conductivity type heavily doped fins. The doped well is arranged in the substrate. The first conductivity type heavily doped fin is arranged in the doped well, arranged in a line along a first direction, and protruded up from a surface of the substrate. The second conductivity type heavily doped fins is arranged in the doped well, arranged in a line along a second direction intersecting the first direction, respectively arranged at two opposite sides of the first conductivity type heavily doped fin, and protruded up from the surface of the substrate. Each second conductivity type heavily doped fin and the first conductivity type heavily doped fin are spaced at a fixed interval.Type: GrantFiled: March 23, 2017Date of Patent: March 27, 2018Assignee: Amazing Microelectronic Corp.Inventors: Ming-Dou Ker, Woei-Lin Wu, James Jeng-Jie Peng, Ryan Hsin-Chin Jiang
-
Publication number: 20180053760Abstract: A self-balanced diode device includes a substrate, a doped well, at least one first conductivity type heavily doped fin and at least two second conductivity type heavily doped fins. The doped well is arranged in the substrate. The first conductivity type heavily doped fin is arranged in the doped well, arranged in a line along a first direction, and protruded up from a surface of the substrate. The second conductivity type heavily doped fins is arranged in the doped well, arranged in a line along a second direction intersecting the first direction, respectively arranged at two opposite sides of the first conductivity type heavily doped fin, and protruded up from the surface of the substrate. Each second conductivity type heavily doped fin and the first conductivity type heavily doped fin are spaced at a fixed interval.Type: ApplicationFiled: March 23, 2017Publication date: February 22, 2018Inventors: MING-DOU KER, WOEI-LIN WU, JAMES JENG-JIE PENG, RYAN HSIN-CHIN JIANG
-
Patent number: 9786653Abstract: A self-balanced diode device includes a substrate, a doped well, at least one first conductivity type heavily doped fin and at least two second conductivity type heavily doped fins. The doped well is arranged in the substrate. The first conductivity type heavily doped fin is arranged in the doped well, arranged in a line along a first direction, and protruded up from a surface of the substrate. The second conductivity type heavily doped fins is arranged in the doped well, arranged in a line along a second direction intersecting the first direction, respectively arranged at two opposite sides of the first conductivity type heavily doped fin, and protruded up from the surface of the substrate. Each second conductivity type heavily doped fin and the first conductivity type heavily doped fin are spaced at a fixed interval.Type: GrantFiled: August 19, 2016Date of Patent: October 10, 2017Assignee: Amazing Microelectronic Corp.Inventors: Ming-Dou Ker, Woei-Lin Wu, James Jeng-Jie Peng, Ryan Hsin-Chin Jiang
-
Patent number: 9748219Abstract: A self-balanced silicon-controlled rectification device includes a substrate, an N-type doped well, a P-type doped well, at least one heavily doped clamping fin, at least one first P-type heavily doped fin, and at least one first N-type heavily doped fin. The N-type doped well and the P-type doped well are arranged in the substrate. The heavily doped clamping fin is arranged in the N-type doped well and the P-type well and protruded up from a surface of the substrate. The first P-type heavily doped fin and the first N-type heavily doped fin are respectively arranged in the N-type doped well and the P-type doped well, and protruded up from the surface of the substrate. The abovementioned elements forms silicon-controlled rectifiers (SCRs) are forward biased to generate uniform electrostatic discharge (ESD) currents through the SCRs.Type: GrantFiled: August 19, 2016Date of Patent: August 29, 2017Assignee: Amazing Microelectronic Corp.Inventors: Ming-Dou Ker, Woei-Lin Wu, James Jeng-Jie Peng, Ryan Hsin-Chin Jiang
-
Patent number: 9728530Abstract: A bipolar transistor device includes a substrate and at least one first transistor unit. The first transistor unit includes a first doped well of first conductivity type, at least one first fin-based structure and at least one second fin-based structure. The first fin-based structure includes a first gate strip and first doped fins arranged in the first doped well, and the first gate strip is floating. The second fin-based structure includes a second gate strip and second doped fins arranged in the first doped well, and the second gate strip is floating. The first doped fins, the second doped fins and the first doped well form first BJTs, and the first doped fins and the second doped fins are respectively coupled to high and low voltage terminals.Type: GrantFiled: December 20, 2016Date of Patent: August 8, 2017Assignee: Amazing Microelectronic Corp.Inventors: Ming-Dou Ker, Woei-Lin Wu, James Jeng-Jie Peng, Ryan Hsin-Chin Jiang
-
Patent number: 9153679Abstract: A silicon-controlled rectification device with high efficiency is disclosed, which comprises a P-type region surrounding an N-type region. A first P-type heavily doped area is arranged in the N-type region and connected with a high-voltage terminal. A plurality of second N-type heavily doped areas is arranged in the N-type region. A plurality of second P-type heavily doped areas is closer to the second N-type heavily doped areas than the first N-type heavily doped area and arranged in the P-type region. At least one third N-type heavily doped area is arranged in the P-type region and connected with a low-voltage terminal. Alternatively or in combination, the second N-type heavily doped areas and the second P-type heavily doped areas are respectively arranged in the P-type region and the N-type region.Type: GrantFiled: March 19, 2015Date of Patent: October 6, 2015Assignee: Amazing Microelectronic Corp.Inventors: Tung-Yang Chen, James Jeng-Jie Peng, Woei-Lin Wu, Ryan Hsin-Chin Jiang
-
Publication number: 20150194511Abstract: A silicon-controlled rectification device with high efficiency is disclosed, which comprises a P-type region surrounding an N-type region. A first P-type heavily doped area is arranged in the N-type region and connected with a high-voltage terminal. A plurality of second N-type heavily doped areas is arranged in the N-type region. A plurality of second P-type heavily doped areas is closer to the second N-type heavily doped areas than the first N-type heavily doped area and arranged in the P-type region. At least one third N-type heavily doped area is arranged in the P-type region and connected with a low-voltage terminal. Alternatively or in combination, the second N-type heavily doped areas and the second P-type heavily doped areas are respectively arranged in the P-type region and the N-type region.Type: ApplicationFiled: March 19, 2015Publication date: July 9, 2015Inventors: Tung-Yang CHEN, James Jeng-Jie PENG, Woei-Lin WU, Ryan Hsin-Chin JIANG
-
Patent number: 9024354Abstract: A silicon-controlled rectification device with high efficiency is disclosed, which comprises a P-type region surrounding an N-type region. A first P-type heavily doped area is arranged in the N-type region and connected with a high-voltage terminal. A plurality of second N-type heavily doped areas is arranged in the N-type region. A plurality of second P-type heavily doped areas is closer to the second N-type heavily doped areas than the first N-type heavily doped area and arranged in the P-type region. At least one third N-type heavily doped area is arranged in the P-type region and connected with a low-voltage terminal. Alternatively or in combination, the second N-type heavily doped areas and the second P-type heavily doped areas are respectively arranged in the P-type region and the N-type region.Type: GrantFiled: August 6, 2013Date of Patent: May 5, 2015Assignee: Amazing Microelectronics Corp.Inventors: Tung-Yang Chen, James Jeng-Jie Peng, Woei-Lin Wu, Ryan Hsin-Chin Jiang
-
Publication number: 20150041848Abstract: A silicon-controlled rectification device with high efficiency is disclosed, which comprises a P-type region surrounding an N-type region. A first P-type heavily doped area is arranged in the N-type region and connected with a high-voltage terminal. A plurality of second N-type heavily doped areas is arranged in the N-type region. A plurality of second P-type heavily doped areas is closer to the second N-type heavily doped areas than the first N-type heavily doped area and arranged in the P-type region. At least one third N-type heavily doped area is arranged in the P-type region and connected with a low-voltage terminal. Alternatively or in combination, the second N-type heavily doped areas and the second P-type heavily doped areas are respectively arranged in the P-type region and the N-type region.Type: ApplicationFiled: August 6, 2013Publication date: February 12, 2015Applicant: AMAZING MICROELECTRONIC CORP.Inventors: TUNG-YANG CHEN, JAMES JENG-JIE PENG, WOEI-LIN WU, RYAN HSIN-CHIN JIANG
-
Publication number: 20130101571Abstract: Methods and compositions for detoxifying nitrobenzodiazepines with nitroreductase mutants.Type: ApplicationFiled: March 23, 2012Publication date: April 25, 2013Applicant: Academia SinicaInventors: Andrew H-J. Wang, Shiuan-Woei Lin Wu, Fu-Chuo Peng, Che-An Wu
-
Publication number: 20120244138Abstract: Methods and compositions for detoxifying nitrobenzodiazepines with nitroreductase mutants.Type: ApplicationFiled: March 23, 2012Publication date: September 27, 2012Applicant: Academia SinicaInventors: Andrew H-J. Wang, Shiuan-Woei Lin Wu, Fu-Chuo Peng, Che-An Wu