Patents by Inventor Wojciech Jakubowski

Wojciech Jakubowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130296495
    Abstract: A polymer composition comprising star macromolecules is provided. Each star macromolecule has a core and five or more arms, wherein the number of arms within a star macromolecule varies across the composition of star molecules. The arms on a star are covalently attached to the core of the star; each arm comprises one or more (co)polymer segments; and at least one arm and/or at least one segment exhibits a different solubility from at least one other arm or one other segment, respectively, in a reference liquid of interest.
    Type: Application
    Filed: October 26, 2011
    Publication date: November 7, 2013
    Applicant: ATRP Solutions, Inc.
    Inventors: Wojciech Jakubowski, Patrick McCarthy, Nicolay Tsarevsky, James Spanswick
  • Patent number: 8569421
    Abstract: A polymer composition comprising star macromolecules is provided. Each star macromolecule has a core and five or more arms, wherein the number of arms within a star macromolecule varies across the composition of star molecules. The arms on a star are covalently attached to the core of the star; each arm comprises one or more (co)polymer segments; and at least one arm and/or at least one segment exhibits a different solubility from at least one other arm or one other segment, respectively, in a reference liquid of interest.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: October 29, 2013
    Assignee: ATRP Solutions, Inc.
    Inventors: Wojciech Jakubowski, Patrick McCarthy, Nicolay Tsarevsky, James Spanswick
  • Patent number: 8404788
    Abstract: Embodiments of the polymerization process of the present invention are directed to polymerizing free radically polymerizable monomers in the presence of a polymerization medium initially comprising at least one transition metal catalyst and an atom transfer radical polymerization initiator. The polymerization medium may additionally comprise a reducing agent. The reducing agent may be added initially or during the polymerization process in a continuous or intermittent manner. The polymerization process may further comprises reacting the reducing agent with at least one of the transition metal catalyst in an oxidized state and a compound comprising a radically transferable atom or group to form a compound that does not participate significantly in control of the polymerization process.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: March 26, 2013
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Lindsay Bombalski, Wojciech Jakubowski, Ke Min, Nicolay V. Tsarevsky, James Spanswick
  • Publication number: 20120172531
    Abstract: A polymer composition comprising star macromolecules is provided. Each star macromolecule has a core and five or more arms, wherein the number of arms within a star macromolecule varies across the composition of star molecules. The arms on a star are covalently attached to the core of the star; each arm comprises one or more (co)polymer segments; and at least one arm and/or at least one segment exhibits a different solubility from at least one other arm or one other segment, respectively, in a reference liquid of interest.
    Type: Application
    Filed: March 2, 2012
    Publication date: July 5, 2012
    Applicant: ATRP Solutions, Inc.
    Inventors: Wojciech Jakubowski, Patrick McCarthy, Nicolay Tsarevsky, James Spanswick
  • Patent number: 8173750
    Abstract: A polymer composition comprising star macromolecules is provided. Each star macromolecule has a core and five or more arms, wherein the number of arms within a star macromolecule varies across the composition of star molecules. The arms on a star are covalently attached to the core of the star; each arm comprises one or more (co)polymer segments; and at least one arm and/or at least one segment exhibits a different solubility from at least one other arm or one other segment, respectively, in a reference liquid of interest.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: May 8, 2012
    Assignee: ATRP Solutions, Inc.
    Inventors: Wojciech Jakubowski, Patrick McCarthy, Nicolay Tsarevsky, James Spanswick
  • Publication number: 20110263722
    Abstract: The present invention relates to the preparation and use of well defined star macromolecules wherein the composition of the arms are selected to induce self assembly when the multi-arm segmented star macromolecules are dispersed in a liquid. The self assembled star macromolecules modify the rheology of the dispersing media. When targeting use in aqueous based systems the inner shell of the star macromolecules comprise non-ionizable monomer units. Compositions comprising the self assemblable star macromolecules are suitable for use as rheology modifiers in a number of applications including cosmetic and personal care compositions.
    Type: Application
    Filed: April 23, 2010
    Publication date: October 27, 2011
    Inventors: Wojciech Jakubowski, Patrick McCarthy, Nicolay Tsarevsky, James Spanswick
  • Publication number: 20110218306
    Abstract: Embodiments of the polymerization process of the present invention are directed to polymerizing free radically polymerizable monomers in the presence of a polymerization medium initially comprising at least one transition metal catalyst and an atom transfer radical polymerization initiator. The polymerization medium may additionally comprise a reducing agent. The reducing agent may be added initially or during the polymerization process in a continuous or intermittent manner. The polymerization process may further comprises reacting the reducing agent with at least one of the transition metal catalyst in an oxidized state and a compound comprising a radically transferable atom or group to form a compound that does not participate significantly in control of the polymerization process.
    Type: Application
    Filed: February 14, 2011
    Publication date: September 8, 2011
    Applicant: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Lindsay Bombalski, Wojciech Jakubowski, Ke Min, James Spanswick, Nicolay V. Tsarevsky
  • Publication number: 20110213105
    Abstract: A procedure for improved temperature control in controlled radical polymerization processes is disclosed. The procedure is directed at controlling the concentration of the persistent radical in ATRP and NMP polymerizations procedures and the concentration of radicals in a RAFT polymerization process by feeding a reducing agent or radical precursor continuously or intermittently to the reaction medium through one of more ports.
    Type: Application
    Filed: December 8, 2010
    Publication date: September 1, 2011
    Inventors: Wojciech Jakubowski, James Spanswick
  • Publication number: 20110112267
    Abstract: A polymer composition comprising star macromolecules is provided. Each star macromolecule has a core and five or more arms, wherein the number of arms within a star macromolecule varies across the composition of star molecules. The arms on a star are covalently attached to the core of the star; each arm comprises one or more (co)polymer segments; and at least one arm and/or at least one segment exhibits a different solubility from at least one other arm or one other segment, respectively, in a reference liquid of interest.
    Type: Application
    Filed: October 27, 2010
    Publication date: May 12, 2011
    Inventors: Wojciech Jakubowski, Patrick McCarthy, Nicolay Tsarevsky, James Spanswick
  • Publication number: 20110082230
    Abstract: A procedure for improved temperature control in controlled radical polymerization processes is disclosed. The procedure is directed at controlling the concentration of the persistent radical in ATRP and NMP polymerizations procedures and the concentration of radicals in a RAFT polymerization process by feeding a reducing agent or radical precursor continuously or intermittently to the reaction medium through one of more ports.
    Type: Application
    Filed: December 18, 2009
    Publication date: April 7, 2011
    Inventors: Wojciech Jakubowski, James Spanswick
  • Publication number: 20110065875
    Abstract: Polymerization processes of the present invention comprise low catalyst concentration. Embodiments include a polymerization process comprising polymerizing free radically (co)polymerizable monomers in a polymerization medium comprising one or more radically (co)polymerizable monomers, a transition metal catalyst complex capable of participating in a one electron redox reaction with an ATRP initiator; a free radical initiator; and an ATRP initiator; (wherein the concentration of transition metal catalyst complex in the polymerization medium is less than 100 ppm). Further embodiments include a polymerization process, comprising polymerizing one or more radically (co)polymerizable monomers in the presence of at least one transition metal catalyst complex; an ATRP initiator; and a reducing agent; wherein the transition metal catalyst complex is present at less than 10?3 mole compared to the moles of radically transferable atoms or groups present on the ATRP initiator.
    Type: Application
    Filed: November 18, 2010
    Publication date: March 17, 2011
    Inventors: Krzysztof Matyjaszewski, Wojciech Jakubowski, James Spanswick
  • Patent number: 7893173
    Abstract: Polymerization processes of the present invention comprise low catalyst concentration. Embodiments include a polymerization process comprising polymerizing free radically (co)polymerizable monomers in a polymerization medium comprising one or more radically (co)polymerizable monomers, a transition metal catalyst complex capable of participating in a one electron redox reaction with an ATRP initiator; a free radical initiator; and an ATRP initiator; (wherein the concentration of transition metal catalyst complex in the polymerization medium is less than 100 ppm). Further embodiments include a polymerization process, comprising polymerizing one or more radically (co)polymerizable monomers in the presence of at least one transition metal catalyst complex; and an ATRP initiator; and a reducing agent; wherein the transition metal catalyst complex is present at less than 10?3 mole compared to the moles of radically transferable atoms or groups present on the ATRP initiator.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: February 22, 2011
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Wojciech Jakubowski, James Spanswick
  • Patent number: 7893174
    Abstract: Embodiments of the polymerization process of the present invention are directed to polymerizing free radically polymerizable monomers in the presence of a polymerization medium initially comprising at least one transition metal catalyst and an atom transfer radical polymerization initiator. The polymerization medium may additionally comprise a reducing agent. The reducing agent may be added initially or during the polymerization process in a continuous or intermittent manner. The polymerization process may further comprise reacting the reducing agent with at least one of the transition metal catalyst in an oxidized state and a compound comprising a radically transferable atom or group to form a compound that does not participate significantly in control of the polymerization process.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: February 22, 2011
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Lindsay Bombalski, Wojciech Jakubowski, Ke Min, James Spanswick, Nicolay V. Tsarevsky
  • Publication number: 20100273949
    Abstract: A polymer composition comprising star macromolecules is provided. Each star macromolecule has a core and five or more arms, wherein the number of arms within a star macromolecule varies across the composition of star molecules. The arms on a star are covalently attached to the core of the star; each arm comprises one or more (co)polymer segments; and at least one arm and/or at least one segment exhibits a different solubility from at least one other arm or one other segment, respectively, in a reference liquid of interest.
    Type: Application
    Filed: April 23, 2010
    Publication date: October 28, 2010
    Inventors: Wojciech Jakubowski, Patrick McCarthy, Nicolay Tsarevsky, James Spanswick
  • Publication number: 20090312505
    Abstract: Polymerization processes of the present invention comprise low catalyst concentration. Embodiments include a polymerization process comprising polymerizing free radically (co)polymerizable monomers in a polymerization medium comprising one or more radically (co)polymerizable monomers, a transition metal catalyst complex capable of participating in a one electron redox reaction with an ATRP initiator; a free radical initiator; and an ATRP initiator; (wherein the concentration of transition metal catalyst complex in the polymerization medium is less than 100 ppm). Further embodiments include a polymerization process, comprising polymerizing one or more radically (co)polymerizable monomers in the presence of at least one transition metal catalyst complex; and an ATRP initiator; and a reducing agent; wherein the transition metal catalyst complex is present at less than 10?3 mole compared to the moles of radically transferable atoms or groups present on the ATRP initiator.
    Type: Application
    Filed: August 28, 2006
    Publication date: December 17, 2009
    Inventors: Krzysztof Matyjaszewski, Wojciech Jakubowski, James Spanswick
  • Publication number: 20090171024
    Abstract: The present invention is directed towards a polymerization process for the preparation of block copolymers. In an embodiment, the polymerization process may comprise low levels of catalyst in an oxidized state that react with a reducing agent to form an active catalyst. Embodiments of the process surprisingly use low levels of catalysts and allow formation of the all blocks with the same catalyst. The catalyst may be deactivated and reactivated to form each block. In one embodiment of the invention, the catalyst is oxidized to the deactivator state when the desired degree of polymerization of a polymer segment or block is reached. The first monomer may be removed prior to addition of the second monomer. The catalyst may then be reactivated for preparation of a second block.
    Type: Application
    Filed: December 20, 2006
    Publication date: July 2, 2009
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Wojciech Jakubowski, James Spanswick, Laura Mueller, Krzysztof Matyjaszewski
  • Publication number: 20070276101
    Abstract: Embodiments of the polymerization process of the present invention are directed to polymerizing free radically polymerizable monomers in the presence of a polymerization medium initially comprising at least one transition metal catalyst and an atom transfer radical polymerization initiator. The polymerization medium may additionally comprise a reducing agent. The reducing agent may be added initially or during the polymerization process in a continuous or intermittent manner. The polymerization process may further comprise reacting the reducing agent with at least one of the transition metal catalyst in an oxidized state and a compound comprising a radically transferable atom or group to form a compound that does not participate significantly in control of the polymerization process.
    Type: Application
    Filed: March 7, 2005
    Publication date: November 29, 2007
    Applicant: CARNEGIE MELLON UINIVERSITY
    Inventors: Krzysztof Matyjaszewski, Lindsay Bombalski, Wojciech Jakubowski, Ke Min, James Spanswick, Nicolay Tsarevsky