Patents by Inventor Wojciech Piotr Giziewicz

Wojciech Piotr Giziewicz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10873402
    Abstract: Methods and active optical cable assemblies for sending a reset signal from a host end of an active optical cable assembly to a peripheral end are disclosed. In one embodiment, a method of resetting a peripheral end of an active optical cable assembly wherein data contacts of a host end of the active optical cable assembly are not coupled to data contacts of the peripheral end of the active optical cable assembly includes detecting a reset signal on one or more data contacts of the host end of the active optical cable assembly. The method further includes, in response to detection of the reset signal, generating a peripheral reset signal at the peripheral end of the active optical cable assembly.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: December 22, 2020
    Assignee: Corning Research & Development Corporation
    Inventors: Wojciech Piotr Giziewicz, Tiernan Sean McCann
  • Patent number: 10739541
    Abstract: Optical cable assemblies with variable output current limits are disclosed. In one embodiment, an active optical cable assembly includes a cable having at least one electrical conductor, a host connector coupled to a first end of the cable, and a device connector coupled to a second end of the cable. The host connector includes a host circuit that determines a current limit of one or more devices coupled to the active optical cable assembly and produces a transmitted voltage in accordance with the current limit on the at least one electrical conductor. The device connector includes a device circuit that detects the transmitted voltage on the at least one electrical conductor and limits a current configured to be provided to a device coupled to the device connector based on the transmitted voltage.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: August 11, 2020
    Assignee: Corning Research & Development Corporation
    Inventor: Wojciech Piotr Giziewicz
  • Patent number: 10698167
    Abstract: A connector device for connecting optical fiber endpieces comprising an optoelectronic chip, a fiber end piece holder and a reflection surface. The chip is oriented for emitting and/or detecting optical signals along a first propagation direction normal to a circuit board. The reflection surface changes a propagation direction of optical signals from the first propagation direction to a different, second propagation direction and/or vice versa. The connector device comprises a layered optical stack mounted to the circuit board and designed for propagation of optical signals along the first propagation direction. The connector device further comprises a coupling adapter piece mounted to the layered optical stack that holds and/or secures the fiber end piece holder in an orientation enabling propagation of signals radiation along the second propagation direction. The reflection surface for changing between both propagation directions is comprised in the coupling adapter piece.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: June 30, 2020
    Assignee: Corning Optical Communcations LLC
    Inventors: Jeffery Alan DeMeritt, Wojciech Piotr Giziewicz, Christopher Paul Lewallen, James Phillip Luther, Jerald Lee Overcash, Rebecca Kayla Schaevitz
  • Publication number: 20200081207
    Abstract: Optical cable assemblies with variable output current limits are disclosed. In one embodiment, an active optical cable assembly includes a cable having at least one electrical conductor, a host connector coupled to a first end of the cable, and a device connector coupled to a second end of the cable. The host connector includes a host circuit that determines a current limit of one or more devices coupled to the active optical cable assembly and produces a transmitted voltage in accordance with the current limit on the at least one electrical conductor. The device connector includes a device circuit that detects the transmitted voltage on the at least one electrical conductor and limits a current configured to be provided to a device coupled to the device connector based on the transmitted voltage.
    Type: Application
    Filed: September 7, 2018
    Publication date: March 12, 2020
    Inventor: Wojciech Piotr Giziewicz
  • Publication number: 20190250341
    Abstract: Optical ports providing passive alignment connectivity are disclosed. In one embodiment, an optical port includes a substrate having a surface, a photonic silicon chip, a connector body, and a plurality of spacer elements. The photonic silicon chip includes an electrical coupling surface, an upper surface and an optical coupling surface. The optical coupling surface is positioned between the electrical coupling surface and the upper surface. The photonic silicon chip further includes at least one waveguide terminating at the optical coupling surface, and a chip engagement feature disposed on the upper surface. The connector body includes a first alignment feature, a second alignment feature, a mounting surface, and a connector engagement feature at the mounting surface. The connector engagement feature mates with the chip engagement feature. The plurality of spacer elements is disposed between the electrical coupling surface of the photonic silicon chip and the surface of the substrate.
    Type: Application
    Filed: April 23, 2019
    Publication date: August 15, 2019
    Inventors: Wojciech Piotr Giziewicz, James Phillip Luther, Andreas Matiss, Jerald Lee Overcash
  • Patent number: 10295762
    Abstract: Optical ports providing passive alignment connectivity are disclosed. In one embodiment, an optical port includes a substrate having a surface, a photonic silicon chip, a connector body, and a plurality of spacer elements. The photonic silicon chip includes an electrical coupling surface, an upper surface and an optical coupling surface. The optical coupling surface is positioned between the electrical coupling surface and the upper surface. The photonic silicon chip further includes at least one waveguide terminating at the optical coupling surface, and a chip engagement feature disposed on the upper surface. The connector body includes a first alignment feature, a second alignment feature, a mounting surface, and a connector engagement feature at the mounting surface. The connector engagement feature mates with the chip engagement feature. The plurality of spacer elements is disposed between the electrical coupling surface of the photonic silicon chip and the surface of the substrate.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: May 21, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Wojciech Piotr Giziewicz, James Phillip Luther, Andreas Matiss, Jerald Lee Overcash
  • Patent number: 10197748
    Abstract: The application provides a connector device for connecting at least one optical fiber endpiece to an electric terminal. The connector device comprises a printed circuit board and an electric connector plug connectable to an electric terminal. A fiber end piece holder is mounted or mountable in an orientation enabling light propagation parallel to the printed circuit board, whereas an optoelectronic chip comprising optoelectronic active elements enables emission and/or detection of light substantially normal to the printed circuit board. A layered optical stack is provided on the printed circuit board, which layered optical stack comprises a reflection surface for changing the propagation direction between parallel and normal to the printed circuit board.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: February 5, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Wojciech Piotr Giziewicz, Christopher Paul Lewallen, James Phillip Luther, Jerald Lee Overcash
  • Publication number: 20180299627
    Abstract: Optical ports providing passive alignment connectivity are disclosed. In one embodiment, an optical port includes a substrate having a surface, a photonic silicon chip, a connector body, and a plurality of spacer elements. The photonic silicon chip includes an electrical coupling surface, an upper surface and an optical coupling surface. The optical coupling surface is positioned between the electrical coupling surface and the upper surface. The photonic silicon chip further includes at least one waveguide terminating at the optical coupling surface, and a chip engagement feature disposed on the upper surface. The connector body includes a first alignment feature, a second alignment feature, a mounting surface, and a connector engagement feature at the mounting surface. The connector engagement feature mates with the chip engagement feature. The plurality of spacer elements is disposed between the electrical coupling surface of the photonic silicon chip and the surface of the substrate.
    Type: Application
    Filed: June 19, 2018
    Publication date: October 18, 2018
    Inventors: Wojciech Piotr Giziewicz, James Phillip Luther, Andreas Matiss, Jerald Lee Overcash
  • Patent number: 10031299
    Abstract: Optical ports providing passive alignment connectivity are disclosed. In one embodiment, an optical port includes a substrate having a surface, a photonic silicon chip, a connector body, and a plurality of spacer elements. The photonic silicon chip includes an electrical coupling surface, an upper surface and an optical coupling surface. The optical coupling surface is positioned between the electrical coupling surface and the upper surface. The photonic silicon chip further includes at least one waveguide terminating at the optical coupling surface, and a chip engagement feature disposed on the upper surface. The connector body includes a first alignment feature, a second alignment feature, a mounting surface, and a connector engagement feature at the mounting surface. The connector engagement feature mates with the chip engagement feature. The plurality of spacer elements is disposed between the electrical coupling surface of the photonic silicon chip and the surface of the substrate.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: July 24, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Wojciech Piotr Giziewicz, James Phillip Luther, Andreas Matiss, Jerald Lee Overcash
  • Publication number: 20180017744
    Abstract: A connector device for connecting optical fiber endpieces comprising an optoelectronic chip, a fiber end piece holder and a reflection surface. The chip is oriented for emitting and/or detecting optical signals along a first propagation direction normal to a circuit board. The reflection surface changes a propagation direction of optical signals from the first propagation direction to a different, second propagation direction and/or vice versa. The connector device comprises a layered optical stack mounted to the circuit board and designed for propagation of optical signals along the first propagation direction. The connector device further comprises a coupling adapter piece mounted to the layered optical stack that holds and/or secures the fiber end piece holder in an orientation enabling propagation of signals radiation along the second propagation direction. The reflection surface for changing between both propagation directions is comprised in the coupling adapter piece.
    Type: Application
    Filed: September 15, 2017
    Publication date: January 18, 2018
    Inventors: Jeffery Alan DeMeritt, Wojciech Piotr Giziewicz, Christopher Paul Lewallen, James Phillip Luther, Jerald Lee Overcash, Rebecca Kayla Schaevitz
  • Publication number: 20170363821
    Abstract: The application provides a connector device for connecting at least one optical fiber endpiece to an electric terminal. The connector device comprises a printed circuit board and an electric connector plug connectable to an electric terminal. A fiber end piece holder is mounted or mountable in an orientation enabling light propagation parallel to the printed circuit board, whereas an optoelectronic chip comprising optoelectronic active elements enables emission and/or detection of light substantially normal to the printed circuit board. A layered optical stack is provided on the printed circuit board, which layered optical stack comprises a reflection surface for changing the propagation direction between parallel and normal to the printed circuit board.
    Type: Application
    Filed: August 30, 2017
    Publication date: December 21, 2017
    Inventors: Wojciech Piotr Giziewicz, Christopher Paul Lewallen, James Phillip Luther, Jerald Lee Overcash
  • Publication number: 20170343747
    Abstract: Optical ports providing passive alignment connectivity are disclosed. In one embodiment, an optical port includes a substrate having a surface, a photonic silicon chip, a connector body, and a plurality of spacer elements. The photonic silicon chip includes an electrical coupling surface, an upper surface and an optical coupling surface. The optical coupling surface is positioned between the electrical coupling surface and the upper surface. The photonic silicon chip further includes at least one waveguide terminating at the optical coupling surface, and a chip engagement feature disposed on the upper surface. The connector body includes a first alignment feature, a second alignment feature, a mounting surface, and a connector engagement feature at the mounting surface. The connector engagement feature mates with the chip engagement feature. The plurality of spacer elements is disposed between the electrical coupling surface of the photonic silicon chip and the surface of the substrate.
    Type: Application
    Filed: May 27, 2016
    Publication date: November 30, 2017
    Inventors: Wojciech Piotr Giziewicz, James Phillip Luther, Andreas Matiss, Jerald Lee Overcash
  • Patent number: 9294197
    Abstract: This invention relates to an optoelectronic component which has the following: an optical component which emits optical signals to an input/output end face of a light guide and/or receives optical signals and converts them into electronic signals, a component carrier located on the optical component, and a housing part which surrounds the optical component and which has coupling means which form optical coupling means and mechanical coupling means (alignment means), the optical coupling means routing the optical signals coming from the optical component to the input end face of the light guide and/or routing the optical beams emerging from the input/output end face of the light guide to the optical component, the mechanical alignment means aligning the light guide with respect to the optical component for efficient signal transmission.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: March 22, 2016
    Assignee: Amphenol Corporation
    Inventors: Wojciech Piotr Giziewicz, Thomas Albert Hall
  • Patent number: 8985868
    Abstract: This invention relates to an optoelectronic transceiver which has the following: an optical transmitter, an optical receiver, coupling means consisting of a first and second optical lens made with optically active interfaces for changing/deflecting optical paths of on the one hand optical output signals A of the optical transmitter to a connectable optical light guide and on the other hand of input signals E of the same light guide to the receiver, characterized in that the first lens has a concave reflection surface which lies inside in the coupling means for signals of the optical transmitter and the second lens has a convex transmission surface which lies outside for outgoing signals of the optical transmitter and a concave reflection surface which lies inside for incoming signals.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: March 24, 2015
    Assignee: Amphenol Corporation
    Inventor: Wojciech Piotr Giziewicz
  • Publication number: 20140072311
    Abstract: This invention relates to an optoelectronic component which has the following: an optical component which emits optical signals to an input/output end face of a light guide and/or receives optical signals and converts them into electronic signals, a component carrier located on the optical component, and a housing part which surrounds the optical component and which has coupling means which form optical coupling means and mechanical coupling means (alignment means), the optical coupling means routing the optical signals coming from the optical component to the input end face of the light guide and/or routing the optical beams emerging from the input/output end face of the light guide to the optical component, the mechanical alignment means aligning the light guide with respect to the optical component for efficient signal transmission.
    Type: Application
    Filed: September 12, 2011
    Publication date: March 13, 2014
    Inventors: Wojciech Piotr Giziewicz, Thomas Albert Hall
  • Publication number: 20140056587
    Abstract: The invention relates to a plug-and-socket connection for connection of a first apparatus via a cable which contains electrical connections and optical connections to a second apparatus or a device, the first apparatus having an apparatus socket and the device having a device socket for accommodating the plug of the cable, characterized in that the apparatus socket and also the device socket having means to convert preferably a part of the electrical signals which were applied on the input side to the apparatus socket into optical signals when a controller/transceiver which is provided in the apparatus socket ascertains that the connected cable has optical lines and that the device socket or apparatus socket is made for receiving optical and electrical signals.
    Type: Application
    Filed: September 12, 2011
    Publication date: February 27, 2014
    Applicant: Amphenol Tuchel Electronics GmbH
    Inventors: Wojciech Piotr Giziewicz, Thomas Albert Hall, Hank Daniel Ching
  • Publication number: 20140050490
    Abstract: This invention relates to an optoelectronic transceiver which has the following: an optical transmitter, an optical receiver, coupling means consisting of a first and second optical lens made with optically active interfaces for changing/deflecting optical paths of on the one hand optical output signals A of the optical transmitter to a connectable optical light guide and on the other hand of input signals E of the same light guide to the receiver, characterized in that the first lens has a concave reflection surface which lies inside in the coupling means for signals of the optical transmitter and the second lens has a convex transmission surface which lies outside for outgoing signals of the optical transmitter and a concave reflection surface which lies inside for incoming signals.
    Type: Application
    Filed: September 12, 2011
    Publication date: February 20, 2014
    Inventor: Wojciech Piotr Giziewicz