Patents by Inventor Wojciech Zbijewski

Wojciech Zbijewski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230419565
    Abstract: Selected artifacts, which may be based on distortions or selected attenuation features, may be reduced or removed from a reconstructed image. Various artifacts may occur due to the presence of a metal object in a field of view. The metal object may be identified and removed from a data that is used to generate a reconstruction.
    Type: Application
    Filed: September 11, 2023
    Publication date: December 28, 2023
    Inventors: Patrick A. HELM, Jeffrey Harold SIEWERDSEN, Ali UNERI, Wojciech ZBIJEWSKI, Xiaoxuan ZHANG, Joseph STAYMAN
  • Patent number: 11756242
    Abstract: Selected artifacts, which may be based on distortions or selected attenuation features, may be reduced or removed from a reconstructed image. Various artifacts may occur due to the presence of a metal object in a field of view. The metal object may be identified and removed from a data that is used to generate a reconstruction.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: September 12, 2023
    Assignee: Medtronic Navigation, Inc.
    Inventors: Patrick A. Helm, Jeffrey H. Siewerdsen, Ali Uneri, Wojciech Zbijewski, Xiaoxuan Zhang, Joseph W. Stayman, IV
  • Publication number: 20220028131
    Abstract: Selected artifacts, which may be based on distortions or selected attenuation features, may be reduced or removed from a reconstructed image. Various artifacts may occur due to the presence of a metal object in a field of view. The metal object may be identified and removed from a data that is used to generate a reconstruction.
    Type: Application
    Filed: October 4, 2021
    Publication date: January 27, 2022
    Inventors: Patrick A. HELM, Jeffrey H. SIEWERDSEN, Ali UNERI, Wojciech ZBIJEWSKI, Xiaoxuan ZHANG, Joseph W. STAYMAN, IV
  • Patent number: 11138768
    Abstract: Selected artifacts, which may be based on distortions or selected attenuation features, may be reduced or removed from a reconstructed image. Various artifacts may occur due to the presence of a metal object in a field of view. The metal object may be identified and removed from a data that is used to generate a reconstruction.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: October 5, 2021
    Assignees: Medtronic Navigation, Inc., Johns Hopkins University
    Inventors: Patrick A. Helm, Jeffrey H. Siewerdsen, Ali Uneri, Wojciech Zbijewski, Xiaoxuan Zhang, Joseph W. Stayman, IV
  • Publication number: 20210196215
    Abstract: The present invention is directed to a method of multi-motion compensation for high-quality cone-beam CT of the head. A multi-stage approach is incorporated that includes a pre-conditioning stage in which an initial estimation of the motion trajectory is obtained with 3D-2D registration using the motion-contaminated CBCT and projection data. In the present invention, the motion-contaminated CBCT is used as a basis for 3D-2D registration in the pre-conditioning stage to capture large amplitude, rapid movements of the head and provide better initialization of the autofocus solution.
    Type: Application
    Filed: May 17, 2019
    Publication date: July 1, 2021
    Inventors: JEFFREY H. SIEWERDSEN, WOJCIECH ZBIJEWSKI, ALEJANDRO SISNIEGA, JOSEPH WEBSTER STAYMAN
  • Patent number: 10631800
    Abstract: The present invention is directed to a system and method for dual-energy (DE) or multiple-energy (spectral) cone-beam computed tomography (CBCT) using a configuration of multiple x-ray sources and a single detector. The x-ray sources are operated to produce x-ray spectra of different energies (peak kilovoltage (kVp) and/or filtration). Volumetric 3D image reconstruction and dual or triple energy 3D image decomposition can be executed using data from the CBCT scan. The invention allows for a variety of selections in energy and filtration associated with each source and the order of pulsing for each source (“firing pattern”). The motivation for distributing the sources along the z direction in CBCT includes extension of the longitudinal field of view and reduction of cone-beam artifacts.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: April 28, 2020
    Assignees: The Johns Hopkins University, Carestream Health, Inc.
    Inventors: Jeffrey H. Siewerdsen, J. Webster Stayman, Wojciech Zbijewski, John Yorkston
  • Publication number: 20190311505
    Abstract: Selected artifacts, which may be based on distortions or selected attenuation features, may be reduced or removed from a reconstructed image. Various artifacts may occur due to the presence of a metal object in a field of view. The metal object may be identified and removed from a data that is used to generate a reconstruction.
    Type: Application
    Filed: April 4, 2019
    Publication date: October 10, 2019
    Inventors: Patrick A. Helm, Jeffrey H. Siewerdsen, Ali Uneri, Wojciech Zbijewski, Xiaoxuan Zhang, Joseph W. Stayman, IV
  • Publication number: 20160262709
    Abstract: The present invention is directed to a system and method for dual-energy (DE) or multiple-energy (spectral) cone-beam computed tomography (CBCT) using a configuration of multiple x-ray sources and a single detector. The x-ray sources are operated to produce x-ray spectra of different energies (peak kilovoltage (kVp) and/or filtration). Volumetric 3D image reconstruction and dual or triple energy 3D image decomposition can be executed using data from the CBCT scan. The invention allows for a variety of selections in energy and filtration associated with each source and the order of pulsing for each source (“firing pattern”). The motivation for distributing the sources along the z direction in CBCT includes extension of the longitudinal field of view and reduction of cone-beam artifacts.
    Type: Application
    Filed: November 25, 2014
    Publication date: September 15, 2016
    Applicants: The Johns Hopkins University, Carestream Health, Inc.
    Inventors: Jeffrey H. Siewerdsen, J. Webster Stayman, Wojciech Zbijewski, John Yorkston