Patents by Inventor Wolfgang Daum

Wolfgang Daum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190176862
    Abstract: System includes a controller configured to obtain one or more of a route parameter or a vehicle parameter from discrete examinations of one or more of a route or a vehicle system. The route parameter is indicative of a health of the route over which the vehicle system travels. The vehicle parameter is indicative of a health of the vehicle system. The discrete examinations of the one or more of the route or the vehicle system separated from each other by one or more of location or time. The controller is configured to examine the one or more of the route parameter or the vehicle parameter to determine whether the one or more of the route or the vehicle system is damaged. The system also includes examination equipment configured to continually monitor the one or more of the route or the vehicle system responsive to determining that the one or more of the route or the vehicle is damaged.
    Type: Application
    Filed: February 14, 2019
    Publication date: June 13, 2019
    Inventors: Ajith Kuttannair Kumar, Wolfgang Daum, Martin Paget, Daniel Rush, Brad Thomas Costa, Seneca Snyder, Jerry Duncan, Mark Bradshaw Kraeling, Michael Scott Miner, Shannon Joseph Clouse, Anwarul Azam, Matthew Lawrence Blair, Nidhi Naithani, Dattaraj Jagdish Rao, Anju Bind, Sreyashi Dey Chaki, Scott Daniel Nelson, Nikhil Uday Naphade, Wing Yeung Chung, Daniel Malachi Ballesty, Glenn Robert Shaffer, Jeffrey James Kisak, Dale Martin DiDomenico, Suresh Govindappa, Manibabu Pippalla, Sethu Madhavan, Arunachala Karthik Sridharan, Prabhu Marimuthu, Jared Klineman Cooper, Joseph Forrest Noffsinger, Paul Kenneth Houpt, David Lowell McKay
  • Patent number: 10259444
    Abstract: A vehicle control system controls operation of motors of a vehicle and determines whether there is sufficient stored electric energy to power the vehicle through an unpowered segment of a route. The controller changes operation of the vehicle to ensure that the vehicle can travel completely through the unpowered segment by switching which energy storage device provides energy, changing vehicle speed, changing motor torque, changing which route is traveled on, selecting fewer motors to power the vehicle, requesting rendezvous with a recharging vehicle, running the energy storage devices in a degraded mode, initiating a motor to generate power to aid in propulsion and/or recharge the energy storage devices, selecting a different route, controlling the vehicle to draft or mechanically couple to another vehicle, and/or controlling the vehicle to gain momentum or to generate an overcharge.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: April 16, 2019
    Assignee: GE GLOBAL SOURCING LLC
    Inventors: Sharath Srinivas Deshpande, Vishram Vinayak Nandedkar, Ajith Kuttannair Kumar, Wolfgang Daum, Glenn Robert Shaffer
  • Publication number: 20190106135
    Abstract: A locomotive control system includes a mobile platform that moves under remote and/or autonomous control, a sensor package supported by the mobile platform that obtains information relating to a component of a railroad, and one or more processors that receive the sensor information and analyze the information in combination with other information that is not obtained from the sensor package. The processors also generate an output that displays information relating to one or more of a status, a condition, and/or a state of health of the component of the railroad; initiates an action to change an operational state of the component; identifies a hazard to one or more locomotives traveling within the railroad; and/or collects the information relating to the component. Optionally, the component is not communicatively coupled to an information network and the mobile platform provides the information obtained by the sensor package to the information network.
    Type: Application
    Filed: November 20, 2018
    Publication date: April 11, 2019
    Inventors: Ajith Kuttannair Kumar, Wolfgang Daum, Martin Paget, Daniel Rush, Sameh Fahmy, Brad Thomas Costa, Seneca Snyder, Jerry Duncan, Mark Bradshaw Kraeling, Michael Scott Miner, Shannon Joseph Clouse, Anwarul Azam, Matthew Lawrence Blair, Nidhi Naithani, Dattaraj Jagdish Rao, Anju Bind, Sreyashi Dey Chaki, Scott Daniel Nelson, Nikhil Uday Naphade, Wing Yeung Chung, Daniel Malachi Ballesty, Glenn Robert Shaffer, Jeffrey James Kisak, Dale Martin DiDomenico
  • Publication number: 20190071107
    Abstract: A locomotive communication system includes a wireless communication device and a controller that controls operation of the wireless communication device. The controller directs the wireless communication device to switch between operating in an off-board communication mode and operating in an onboard communication mode. The wireless communication device communicates a remote data signal with an off-board location while the wireless communication device is operating in the off-board communication mode and the wireless communication device communicates a local data signal between the propulsion-generating vehicles of the vehicle system while the wireless communication device is operating in the onboard communication mode.
    Type: Application
    Filed: November 6, 2018
    Publication date: March 7, 2019
    Inventors: Jared Klineman Cooper, Robert James Foy, David Michael Peltz, Eugene Smith, Steven Andrew Kllner, Brian William Schroeck, Keith Gilbertson, Joseph Forrest Noffsinger, Wolfgang Daum
  • Publication number: 20190050220
    Abstract: A method includes receiving, at a data hub onboard an asset, a new configuration file, a service program, and a software update of a software application of the asset from a remote location. The data hub includes a current configuration file that indicates a current configuration state of the software application. The new configuration file indicates an updated configuration state of the software application with the software update. The service program includes work instructions for applying the updated configuration state to the software application. The method includes displaying the current configuration file and the new configuration file onboard the asset using the data hub. The method also includes updating the software application with the updated configuration state according to the work instructions of the service program using the data hub.
    Type: Application
    Filed: October 5, 2018
    Publication date: February 14, 2019
    Inventors: Wolfgang Daum, Mark Bradshaw Kraeling, Vinaykanth V. Mudiam, Todd William Goodermuth, Marc Ballard, Paul Connolly
  • Publication number: 20190002002
    Abstract: A system and method for examining a route and/or vehicle system obtain a route parameter and/or a vehicle parameter from discrete examinations of the route and/or the vehicle system. The route parameter is indicative of a health of the route over which the vehicle system travels. The vehicle parameter is indicative of a health of the vehicle system. The discrete examinations of the route and/or the vehicle system are separated from each other by location and/or time. The route parameter and/or the vehicle parameter are examined to determine whether the route and/or the vehicle system is damaged and, responsive to determining that the route and/or the vehicle is damaged, the route and/or the vehicle system are continually monitored, such as by examination equipment onboard the vehicle system.
    Type: Application
    Filed: October 26, 2015
    Publication date: January 3, 2019
    Inventors: Sameh Fahmy, Jared Klineman Cooper, Ajith Kuttannair Kumar, Joseph Forrest Noffsinger, Wolfgang Daum, Glenn Robert Shaffer, Paul Kenneth Houpt, David Lowell McKay
  • Patent number: 10144440
    Abstract: A communication system includes a first wireless communication device disposed onboard a vehicle system having two or more propulsion-generating vehicles that are mechanically interconnected with each other. The communication system also includes a controller configured to be disposed onboard the vehicle system and operatively connected with the first wireless communication device in order to control operations of the device. The controller is configured to direct the first wireless communication device to switch between operating in an off-board communication mode and an onboard communication mode. When the first wireless communication device is operating in the off-board communication mode, the device is configured to receive remote data signals from a location that is disposed off-board of the vehicle system.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: December 4, 2018
    Assignee: General Electric Company
    Inventors: Jared Klineman Cooper, Robert James Foy, David Michael Peltz, Eugene Smith, Steven Andrew Kellner, Brian William Schroeck, Keith Gilbertson, Joseph Forrest Noffsinger, Wolfgang Daum
  • Patent number: 10132882
    Abstract: A body coil support structure includes an elongate support member. The elongate support member defines an opening and an examination axis passing through the opening along a length of the elongate support member. The opening is configured to accept an object to be imaged. The elongate support member has a target shape for use during operation of the MRI system, with the elongate support member configured to be subjected to an operational load during operation. In a design state, the elongate support member defines a design shape, with the elongate support member not subjected to the operational load in the design state. In an installed state after installation in the MRI system, the elongate support member defines an operational shape. The elongate support member is subjected to the operational load in the installed state. The operational shape is closer to the target shape than is the design shape.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: November 20, 2018
    Assignee: General Electric Company
    Inventors: Daniel Garcia, Wolfgang Daum, Chinmoy Goswami, Jason Montclair Pittman, Amy Meyers
  • Publication number: 20180186357
    Abstract: A vehicle control system controls operation of motors of a vehicle and determines whether there is sufficient stored electric energy to power the vehicle through an unpowered segment of a route. The controller changes operation of the vehicle to ensure that the vehicle can travel completely through the unpowered segment by switching which energy storage device provides energy, changing vehicle speed, changing motor torque, changing which route is traveled on, selecting fewer motors to power the vehicle, requesting rendezvous with a recharging vehicle, running the energy storage devices in a degraded mode, initiating a motor to generate power to aid in propulsion and/or recharge the energy storage devices, selecting a different route, controlling the vehicle to draft or mechanically couple to another vehicle, and/or controlling the vehicle to gain momentum or to generate an overcharge.
    Type: Application
    Filed: February 28, 2018
    Publication date: July 5, 2018
    Inventors: Sharath Srinivas Deshpande, Vishram Vinayak Nandedkar, Ajith Kuttannair Kumar, Wolfgang Daum, Glenn Robert Shaffer
  • Patent number: 9950722
    Abstract: A system includes a first controller, a data acquisition device, a friction modification unit, and a friction management controller. The first controller is configured to obtain an operational setting for a vehicle, and to output a first signal relating to the operational setting for controlling the vehicle. The data acquisition device is configured to obtain operational data of the vehicle as the vehicle travels, and to provide the operational data to the first controller. The first controller is configured to obtain a difference between the operational data and the operational setting, and to adjust the first signal based on the difference. The friction modification unit is configured to modify a friction characteristic of a surface of the route. The friction management controller is configured to direct the friction modification unit to modify the friction characteristic of the surface of the route based on the operational setting.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: April 24, 2018
    Assignee: General Electric Company
    Inventors: Ajith Kuttannair Kumar, David Eldredge, Daniel Ballesty, Jared Klineman Cooper, Christopher Roney, Paul Houpt, Stephen Mathe, Paul Julich, Jeffrey Kisak, Glenn Shaffer, Scott Nelson, Wolfgang Daum
  • Patent number: 9828010
    Abstract: A mission planner system for a powered system, the mission planner system including a receiving device to collect aspect information as the powered system performs a mission, said aspect information being received from a remote location, a processor to determine a speed limit based at least in part on the aspect information, and a control system connected to the powered system to operate the powered system in response to the speed limit. A method and a computer software code for determining the mission plan with aspect information obtained from a remote location during the mission are also disclosed.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: November 28, 2017
    Assignee: General Electric Company
    Inventors: Tom Otsubo, Wolfgang Daum, Craig Alan Stull, Gregory Hann, Phillip Danner
  • Patent number: 9822717
    Abstract: A system and method control a powered system having an engine configured to operate using a plurality of fuel types. A first set of control signals including a first set of valve signals are communicated to each fuel tank based at least in part on a first stored engine operating profile to control amounts of fuel provided from each fuel tank to the engine. A different, second set of control signals including a second set of valve signals are communicated to the fuel tanks based at least in part on a second stored engine operating profile to control or change the amounts of fuel from each fuel tank to the engine. The system and method can switch between operating conditions associated with different external domains to alter the engine operating profile used to control the fuel or fuels supplied to the engine.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: November 21, 2017
    Assignee: General Electric Company
    Inventors: Ajith Kuttannair Kumar, Wolfgang Daum
  • Patent number: 9580091
    Abstract: A system includes a first communication module and a second communication module. The first communication module is configured to be disposed onboard a first vehicle of a vehicle consist, and the second communication module is configured to be disposed onboard a second vehicle of the vehicle consist. The first and second communication modules are communicatively coupled by first and second communication paths. The first and second communication modules are configured to communicate first information over the first communication path and second information over the second communication path. At least a portion of the first information includes a first command corresponding to a first operation of at least one of the first or second vehicles. At least a portion of the second information includes a second command corresponding to the first operation.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: February 28, 2017
    Assignee: General Electric Company
    Inventors: Mark Bradshaw Kraeling, Wolfgang Daum, Brian Lee Staton, Todd William Goodermuth
  • Patent number: 9545854
    Abstract: A control system includes a controller and an energy management system. The controller is onboard a vehicle that includes motors and an onboard energy storage device that powers the motors. The energy management system calculates estimated electric loads of powering the motors over one or more segments of a trip according to designated operational settings of a trip plan. The energy management system also determines a demanded amount of electric energy for powering the vehicle based on the estimated electric loads. The demanded amount of electric energy is based on a stored amount of electric energy in the onboard storage device. The energy management system communicates the demanded amount of electric energy to one or more of plural wayside stations disposed along the route so that the wayside stations have sufficient electric energy to charge the onboard energy storage device with the electric energy to meet the estimated electric loads.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: January 17, 2017
    Assignee: General Electric Company
    Inventors: Wolfgang Daum, Ajith Kuttannair Kumar, Glenn Robert Shaffer
  • Publication number: 20160363640
    Abstract: A body coil support structure includes an elongate support member. The elongate support member defines an opening and an examination axis passing through the opening along a length of the elongate support member. The opening is configured to accept an object to be imaged. The elongate support member has a target shape for use during operation of the MRI system, with the elongate support member configured to be subjected to an operational load during operation. In a design state, the elongate support member defines a design shape, with the elongate support member not subjected to the operational load in the design state. In an installed state after installation in the MRI system, the elongate support member defines an operational shape. The elongate support member is subjected to the operational load in the installed state. The operational shape is closer to the target shape than is the design shape.
    Type: Application
    Filed: June 9, 2015
    Publication date: December 15, 2016
    Inventors: Daniel Garcia, Wolfgang Daum, Chinmoy Goswami, Jason Montclair Pittman, Amy Meyers
  • Publication number: 20160355198
    Abstract: A vehicle control system includes a controller that communicates between a first vehicle and a second vehicle and/or a monitoring device in a vehicle system. The controller determines a communication loss and, responsive to determining the communication loss, switches to communicating via a different communication path. The controller also determines an operational restriction on movement of the vehicle system based on the communication loss that is determined, obtains a transitional plan that designates operational settings of the vehicle system at one or more different locations along a route being traveled by the vehicle system, different distances along the route being traveled by the vehicle system, and/or different times. The controller automatically changes the movement of the vehicle system according to the operational settings designated by the transitional plan to reduce the movement of the vehicle system to or below the operational restriction.
    Type: Application
    Filed: August 15, 2016
    Publication date: December 8, 2016
    Inventors: Scott William Dulmage, Robert Thomas Oliveira, Jared Klineman Cooper, Wolfgang Daum, Mark Bradshaw Kraeling, Brian Lawry, Joseph Forrest Noffsinger, Steven Andrew Kellner, Eugene Smith, Glen Paul Peltonen
  • Patent number: 9513630
    Abstract: A wireless communication device of a vehicle system includes one or more antennas configured to be disposed onboard a first vehicle of the vehicle system, a first modem configured to be disposed onboard the first vehicle and to communicate a first wireless signal to one or more of a second vehicle of the vehicle system or an off-board device using the one or more antennas, and a second modem configured to be disposed onboard the first vehicle and to communicate a second wireless signal to the one or more of the second vehicle or the off-board device using the one or more antennas. The first modem is configured to communicate the first wireless signal via a first type of wireless communication link and the second modem is configured to communicate the second wireless signal via a different, second type of wireless communication link.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: December 6, 2016
    Assignee: General Electric Company
    Inventors: Santhanakrishnan Rajendran, Praful Babuji Vihol, Dibyajyoti Pati, Jared Klineman Cooper, Robert James Foy, David Michael Peltz, Eugene Smith, Steven Andrew Kellner, Brian William Schroeck, Keith Gilbertson, Joseph Forrest Noffsinger, Wolfgang Daum
  • Patent number: 9493143
    Abstract: A control system includes an onboard controller, a location determination system, and a speed sensor. The controller identifies a designated area along a route that includes a downhill section, an airflow restricted area, a banked section, a section to be cleaned, an adverse environmental area, an adverse vehicular condition area, and/or a section where travel is restricted. The designated area is associated with an operating rule that requires the vehicle to travel at least as fast as a lower speed limit. The location determination system monitors actual locations of the vehicle as the vehicle travels along the route. The speed sensor obtains speed data representative of an actual velocity of the vehicle. The controller restricts control of the vehicle such that the actual velocity of the vehicle is at least as fast as the lower speed limit of the designated area when the vehicle is in the designated area.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: November 15, 2016
    Assignee: General Electric Company
    Inventors: Jared Klineman Cooper, David Eldredge, David Peltz, John Brand, Frank Wawrzyniak, Robert Bremmer, Michael Barrett, Wolfgang Daum
  • Patent number: 9493175
    Abstract: A control system including a measurement module configured to receive motor measurements that represent operating parameters of plural traction motors of a common vehicle system as the vehicle system propels along a route. The control system also includes an analysis module configured to compare the motor measurements to an expected measurement. The expected measurement corresponds to a designated motor type. The analysis module is configured to determine that at least one of the traction motors is different from the designated motor type based on comparing the motor measurements to the expected measurement.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: November 15, 2016
    Assignee: General Electric Company
    Inventors: Ajith Kuttannair Kumar, Wolfgang Daum
  • Patent number: 9475391
    Abstract: A rail vehicle system and a method for managing distribution of power in the rail vehicle system are provided.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: October 25, 2016
    Assignee: General Electric Company
    Inventors: Todd William Goodermuth, Wolfgang Daum, Mark Kraeling, Jared Klineman Cooper, Ning Zhang